Some Applications of Resonance Theory to Open Spin Systems

Marco Merkli

Department of Mathematics, Memorial University, St. John's, Canada

Collaborators:

Gennady Berman

Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA

Fausto Borgonovi

Dipartimento di Matematica, Università Cattolica, Brescia, Italy

Michael Sigal

Department of Mathematics, University of Toronto, Toronto, Canada

Erwin Schrödinger Institut June 2010

I Open Quantum Systems

- Total system: { system S } + { reservoir(s) R} + { interactions }
- S: few degrees of freedom, N-level system (finitely many spins)
- R: many degrees of freedom, spatially extended free (bosonic) quantum field in thermal equilibrium at temperature T > 0
- Dynamics of total density matrix:

$$\rho_{\rm SR}(t) = e^{-itH/\hbar} \rho_{\rm SR}(0) e^{itH/\hbar}$$

 $H = H_{\rm S} + H_{\rm R} + H_{\rm I}$: total Hamiltonian

- Reduced density matrix: $\rho(t) = \text{Tr}_{R} \rho_{SR}(t)$ (partial trace over R)
- Dynamics of reduced density matrix: $\rho(t) = V(t)\rho(0)$, V(t) dynamical map (not (semi-)group)
- Time-scales: $\begin{cases} \tau_{\rm S} & \text{isolated S} \quad (\leftrightarrow \omega_{\rm S} = (E E')/\hbar) \\ \tau_{\rm relax} & \text{relaxation time of S} \quad (\leftrightarrow H_{\rm I}) \\ \tau_{\rm R} = \frac{\hbar}{k_{\rm B}T} & \text{thermal reservoir correlation time} \end{cases}$

Quantum Optical Master Equation

[Legget et al. '81, Palma et. al. '96, Gardiner-Zoller '04, Weiss '99]

• Finite system coupled to bosonic reservoir

$$H = H_{\rm S} + \sum_k \hbar \omega_k a_k^{\dagger} a_k + \lambda G \sum_k g_k (a_k^{\dagger} + a_k)$$

 $H_{\rm S}, G: N \times N$ matrices, g_k : coupling function; reduced evolution

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{1}{\hbar^2} \int_0^t \mathrm{Tr}_{\mathrm{R}} \big[H_{\mathrm{I}}(t), [H_{\mathrm{I}}(s), \rho_{\mathrm{SR}}(s)] \big] \mathrm{d}s$$

• Born-Markov approximation: system relaxation much slower than decay of reservoir correlations (memory effects weak) + Rotating wave approximation: syst. relax. much slower than free system dynamics

= Quantum Optical Regime: $\max\{\tau_R, \tau_S\} \ll \tau_{relax}$

Master equation, van Hove limit, resonance representation

• Markovian master equation (Born-Markov + rotating wave approx.)

$$\rho(t) = \mathrm{e}^{t\mathcal{L}_{\lambda}}\rho(0),$$

Lindblad generator $\mathcal{L}_{\lambda} = \mathcal{L}_0 + \lambda^2 K^{\#}$.

• Weak coupling (van Hove) limit: $\forall a > 0$

$$\lim_{\lambda \to 0} \sup_{\lambda^2 t \in (0,a)} ||V_{\lambda}(t) - e^{t\mathcal{L}_{\lambda}}|| = 0.$$

• Resonance representation

$$\sup_{t\geq 0} ||V_{\lambda}(t) - e^{tM_{\lambda}}|| \leq C\lambda^2$$

Valid for small λ . M_{λ} contains all orders in λ , $M_{\lambda} = \mathcal{L}_{\lambda} + O(\lambda^4)$. Necessitates regularity of interaction and positive temperature.

II Resonance representation of reduced dynamics

S: *N*-level system,

 $H_{\rm S} = \operatorname{diag}(E_1, \dots, E_N), \qquad H_{\rm S}\Phi_n = E_n\Phi_n, \quad n = 1, \dots, N$

 $R = R_1 + \cdots + R_K$: collection of reservoirs,

$$H_{\mathrm{R}_{j}} = \int_{\mathrm{R}^{3}} |k| a_{j}^{*}(k) a_{j}(k) \mathrm{d}^{3}k, \quad j = 1, \dots, K$$

Interactions $S \leftrightarrow R_j$:

$$H_{\mathrm{I},j} = \alpha_j G_j \otimes \varphi(g_j), \quad j = 1, \dots, K$$

 α_j : coupling constant, G_j : matrix on S, $g_j(k) \in L^2(\mathbb{R}^3, \mathrm{d}^3k)$ form factor,

$$\varphi(g_j) = \frac{1}{\sqrt{2}} \int_{\mathbf{R}^3} \left\{ g_j(k) a^*(k) + g_j(k)^* a(k) \right\} \mathrm{d}^3 k$$

Marco Merkli

Evolution of reduced density matrix elements:

$$[\rho_t]_{mn} = \langle \Phi_m, \rho_t \Phi_n \rangle = \text{Tr}_{\text{SR}} \, e^{-itH} \rho_{\text{SR}}(0) e^{itH} |\Phi_n\rangle \langle \Phi_m | \Phi_n \rangle \langle \Phi_m | \Phi_n \rangle$$

$$H = H_{\rm S} + \sum_{j=1}^{K} H_{{\rm R}_j} + \sum_{j=1}^{K} H_{{\rm I},j}$$

Uncoupled dynamics, $\alpha := \max |\alpha_j| = 0$

$$[\rho_t]_{mn} = \mathrm{e}^{\mathrm{i}t(E_n - E_m)} [\rho_0]_{mn}$$

Effects of coupling:

- Irreversibility $E_n - E_m \to \varepsilon_{E_n - E_m}^{(s)} = E_n - E_m + \delta_{E_n - E_m}^{(s)} + O(\alpha^4) \in \mathbf{C}$ with $\delta_{E_n - E_m}^{(s)} = O(\alpha^2)$ and $\operatorname{Im} \delta_{E_n - E_m}^{(s)} \ge 0$
- Joint evolution of elements $[\rho_t]_{mn} = F_t([\rho_0]_{kl} : E_k - E_l = E_m - E_n) + O(\alpha^2)$ define cluster $C(e) = \{(k, l) : E_k - E_l = e\}$

Assumptions

- 1. Regularity of form factors: translation analyticity; IR behaviour $f, g \sim |k|^p$, $p = -\frac{1}{2} + \mathbf{N}$ and UV cutoff (e.g. $\sim e^{-|k|/|k_0|}$)
- 2. Fermi golden rule condition: resonance energies $\varepsilon_e^{(s)}$ are distinct at 2nd order in α .
- 3. System and reservoirs not entangled initially,

$$\rho_{\mathrm{SR}}(0) = \rho_{\mathrm{S}}(0) \otimes \rho_{\mathrm{R}_1}(0) \cdots \otimes \rho_{\mathrm{R}_K}(0)$$

and reservoirs in thermal state at temperature $T = 1/\beta > 0$.

Remark:

$$au_{
m S} = \max_{E \neq E'} rac{\hbar}{E - E'}, \quad au_{
m R} = rac{\hbar}{k_{
m B}T}, \quad au_{
m relax} \propto \lambda^{-2}$$

Assumptions imply $\max\{ au_{
m S}, au_{
m R}\}\ll au_{
m relax}$, quantum optical regime.

Theorem There is an $\alpha_0 > 0$ s.t. if $\alpha < \alpha_0$ then we have for all $t \ge 0$

$$[\rho_t]_{mn} = \sum_{(k,l)\in\mathcal{C}(E_m - E_n)} A_t(m,n;k,l) [\rho_0]_{kl} + O(\alpha^2),$$

where the remainder is uniform in t. The A_t satisfy the Chapman-Kolmogorov relation

$$A_{t+s}(m,n;k,l) = \sum_{(p,q)\in\mathcal{C}(E_m - E_n)} A_t(m,n;p,q) A_s(p,q;k,l)$$

and they have the resonance representation

$$A_t(m,n;k,l) = \sum_{s=1}^{\text{mult}(E_n - E_m)} e^{it\varepsilon_{E_n - E_m}^{(s)}} \langle \Phi_l \otimes \Phi_k, \eta_{E_n - E_m}^{(s)} \rangle \langle \widetilde{\eta}_{E_n - E_m}^{(s)}, \Phi_n \otimes \Phi_m \rangle.$$

Here, $\varepsilon_{E_n-E_m}^{(s)} \in \mathbf{C}$ are resonance energies and $\eta_{E_n-E_m}^{(s)}, \widetilde{\eta}_{E_n-E_m}^{(s)} \in \mathcal{H}_S \otimes \mathcal{H}_S$ are resonance vectors.

Marco Merkli

• Leading dynamics: distinct spectral subspaces of $L_{\rm S} = H_{\rm S} \otimes 1 - 1 \otimes H_{\rm S}$ evolve independently, dynamics within each subspace is markovian.

• To calculate resonance data $\varepsilon_e^{(s)}, \eta_e^{(s)}, \tilde{\eta}_e^{(s)}$, use spectral deformation of Liouville operator $K_{\alpha}(\theta) = L_0(\theta) + W_{\alpha}(\theta)$ and perturbation theory in coupling strength α .

 $L_0(\theta) = L_S + L_R + \theta N \text{ sum of}$ commuting selfadjoint operators; continuous spectrum separated from point spectrum by Im θ . Resonance energies $\varepsilon_e^{(s)} = e + \delta_e^{(s)} + O(\alpha^4)$ $\delta_e^{(s)} = O(\alpha^2)$

III Open Spin Systems

Model: N spins 1/2 coupled to local and collective reservoirs

$$H = \sum_{n=1}^{N} \omega_n S_n^z + \sum_{n=1}^{N} H_{\mathrm{R},n} + H_{\mathrm{R}}$$
$$+ \sum_{n=1}^{N} \lambda_n S_n^x \otimes \varphi_c(g_c) + \sum_{n=1}^{N} \kappa_n S_n^z \otimes \varphi_c(f_c)$$
$$+ \sum_{n=1}^{N} \mu_n S_n^x \otimes \varphi_n(g_n) + \sum_{n=1}^{N} \nu_n S_n^z \otimes \varphi_n(f_n)$$

 $\omega_n > 0$: frequency of spin *n*; H_R : Hamiltonian of single bosonic reservoir,

$$S^{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad S^{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad H_{\mathrm{R}} = \int_{\mathrm{R}^{3}} |k| a^{*}(k) a(k) \mathrm{d}^{3} k$$

Form factors $f_c(k)$, $f_n(k)$, coupling constants $\kappa_n, \lambda_n, \mu_n, \nu_n$

Marco Merkli

Results on:

• Decoherence: N spins, collective reservoirs (with G.P. Berman and I.M. Sigal, Phys. Rev. Lett. (2007), Annals of Physics (2008), Annals of Physics (2008))

• Entanglement: 2 spins, collective and local reservoirs (with G.P. Berman, F. Borgonovi, K. Gebresellasie, *submitted* 2010)

Work in progress:

• Magnetization: N spins, collective and local reservoirs (with G.P. Berman and T. Redondo)

Evolution of collective decoherence

Palma-Suominen-Ekert ['96]: pure dephasing

$$H = \operatorname{diag}(E_1, \ldots, E_N) + H_{\mathrm{R}} + \operatorname{diag}(\gamma_1, \ldots, \gamma_N) \otimes \varphi(g)$$

Explicit solution:

$$[\rho_t]_{m,n} = [\rho_0]_{m,n} e^{-it(E_m - E_n)} e^{i(\gamma_m^2 - \gamma_n^2)S(t)} e^{-(\gamma_m - \gamma_n)^2\Gamma(t)}$$

where

$$\begin{split} \Gamma(t) &= \int_{\mathbf{R}^3} |g(k)|^2 \coth(\beta \omega/2) \frac{\sin^2(\omega t/2)}{\omega^2} \mathrm{d}^3 k \\ S(t) &= \frac{1}{2} \int_{\mathbf{R}^3} |g(k)|^2 \frac{\omega t - \sin \omega t}{\omega^2} \mathrm{d}^3 k \end{split}$$

Model with dephasing and energy-exchange

N-qubit register collectively coupled to single bosonic reservoir

$$H = \sum_{j=1}^{N} B_j S_j^z + H_{\mathrm{R}} + \lambda_1 \sum_{j=1}^{N} S_j^z \otimes \phi(g_1) + \lambda_2 \sum_{j=1}^{N} S_j^x \otimes \phi(g_2).$$

 $B_j > 0$: magnetic field at location of spin j, collective energy conserving and energy exchange interaction; spin config. $\underline{\sigma} = (\sigma_1, \dots, \sigma_N)$, $\sigma_j = \pm 1$

- Energy basis: $H_{\rm S}\varphi_{\underline{\sigma}} = E(\underline{\sigma})\varphi_{\underline{\sigma}}, \ E(\underline{\sigma}) = \sum_{j=1}^{N} \frac{1}{2}B_j\sigma_j$
- Bohr energies: $e(\underline{\sigma}, \underline{\tau}) = E(\underline{\sigma}) E(\underline{\tau})$
- Matrix element clusters: $\mathcal{C}(\underline{\sigma}, \underline{\tau}) = \{(\underline{\sigma}', \underline{\tau}') : e(\underline{\sigma}, \underline{\tau}) = e(\underline{\sigma}', \underline{\tau}')\}$
- Assume *uncorrelated* magnetic field: $n_j, n'_j \in \{-1, 0, 1\}$

$$\left\{\sum_{j=1}^{N} B_j(n_j - n'_j) = 0\right\} \Rightarrow \left\{n_j = n'_j \text{ for all } j\right\}$$

• Resonance representation

$$[\rho_t]_{\underline{\sigma},\underline{\tau}} = \sum_{(\underline{\sigma}',\underline{\tau}')\in\mathcal{C}(\underline{\sigma},\underline{\tau})} \sum_{s=1}^{\operatorname{mult}(e(\underline{\sigma},\underline{\tau}))} \exp\{\mathrm{i}t\varepsilon_{e(\underline{\sigma}',\underline{\tau}')}^{(s)}\} C(\underline{\sigma},\underline{\tau};\underline{\sigma}',\underline{\tau}') \ [\rho_0]_{\underline{\sigma}',\underline{\tau}'} + O(\lambda_1^2 + \lambda_2^2)$$

- Perturbation expansion: $\varepsilon_e^{(s)} = e + \delta_e^{(s)} + O(\lambda_1^4 + \lambda_2^4)$
- \bullet Remainder not uniform in N

Marco Merkli

Cluster decoherence rates

• Each cluster (e) has own decay rate: cluster decoherence rate

$$\gamma_e = \min\left\{ \operatorname{Im} \varepsilon_e^{(s)} : s = 1, \dots, \operatorname{mult}(e) \right\}$$

• Thermalization rate:

$$\gamma_{\text{therm}} = \min\left\{ \text{Im}\varepsilon_0^{(s)}: s = 1, \dots, \text{mult}(0) \text{ with } \text{Im}\,\varepsilon_0^{(s)} \neq 0 \right\}$$

• Explicitly solvable energy-conserving model (Palma-Suominen-Ekert)

$$\gamma_e \propto [\sum_{j=1}^N (\sigma_j - \tau_j)]^2$$

 \exists Decoherence-free subspaces

Explicit form of decoherence rates

$$\gamma_e = \left\{ \begin{array}{ll} \lambda_2^2 y_0, & e = 0\\ \lambda_1^2 y_1(e) + \lambda_2^2 y_2(e) + y_{12}(e), & e \neq 0 \end{array} \right\} + O(\lambda_1^4 + \lambda_2^4)$$

- $y_0 = \pi \min_{1 \le j \le N} \{B_j^2 \mathcal{G}_2(B_j) \coth(\beta B_j/2)\}$ energy exchange, $\mathcal{G}_2(x) \propto |g_2(x)|^2$
- $y_1(e) = \frac{\pi}{2\beta} [e_0(e)]^2 \gamma_+$

energy conserving, $e_0(e) = \sum_{j=1}^N (\sigma_j - \tau_j)$, $\gamma_+ = \lim_{|k| \to 0} |k| \mathcal{G}_1(k)$

• $y_2(e) = \frac{1}{2}\pi \sum_{j:\sigma_j \neq \tau_j} B_j^2 \mathcal{G}_2(B_j) \coth(\beta B_j/2)$

energy exchange

• $y_{12}(e) \ge 0$: more complicated expression, dep. on both interactions, $O(\lambda_1^2 + \lambda_2^2)$ $y_{12}(e) > 0$ unless λ_1 or λ_2 or $e_0(e)$ or γ_+ vanish; $y_{12}(e)$ approaches constant

values as $T \to 0, \infty$ • **Full decoherence** ($\gamma_e > 0$ for all $e \neq 0$): If $\lambda_2 \neq 0$, $g_2(B_j) \neq 0$ for all jNo decoherence-free subspaces!

Dependence on register size N

- Thermalization: y_0 independent of N
- Assume distribution of magnetic field $\langle \rangle$;

$$\langle y_1 \rangle = y_1 \propto [e_0(e)]^2, \quad \langle y_2 \rangle \propto D(e), \quad \langle y_{12} \rangle \propto N_0(e),$$

where
$$\begin{cases} e_0(e) = \sum_{j=1}^N (\sigma_j - \tau_j) \\ D(e) = \sum_{j=1}^N |\sigma_j - \tau_j| \\ N_0(e) = \{\#j : \sigma_j = \tau_j\} \end{cases}$$
 Hamming distance

• Pure energy-cons. interaction: $\gamma_e \propto \lambda_1^2 [e_0(e)]^2$ as large as $O(\lambda_1^2 N^2)$ • Pure energy exchange interaction: $\gamma_e \propto \lambda_2^2 D(e) \leq O(\lambda_2^2 N)$ • Both interactions: additional term $\langle y_{12} \rangle = O((\lambda_1^2 + \lambda_2^2)N)$

- Local, energy-conserving interaction \Rightarrow fastest decoherence rate $O(\lambda_1^2 N)$
- Assumption $\tau_{\rm S} \ll \tau_{\rm relax} \Leftrightarrow \lambda_{1,2}^2 N^2 \ll \Delta_N := \min_{\underline{\sigma},\underline{\tau}}^* |E(\underline{\sigma}) E(\underline{\tau})|$
- Magnetic field roughly constant $B_j \sim B \Rightarrow \Delta_N \sim B$ indep. of N

Evolution of Entanglement

Von Neumann entropy of quantum state ρ : $S(\rho) = -\text{Tr}(\rho \ln \rho) \ge 0$ **Entanglement of pure state** $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ [Bennet et al. PhysRevA'96]

$$\mathcal{E}(\psi) := S(\operatorname{Tr}_B |\psi\rangle \langle \psi|) \ge 0$$

Property: $\mathcal{E}(\psi) = 0 \Leftrightarrow \operatorname{Tr}_B |\psi\rangle \langle \psi|$ pure $\Leftrightarrow \psi = \psi_A \otimes \psi_B$ Entanglement of mixed state ρ of A + B

$$\mathcal{E}(\rho) := \inf_{\mathcal{R}(\rho)} \sum_{j} p_j \mathcal{E}(\psi_j) \ge 0$$

$$\mathcal{R}(\rho) := \left\{ (\psi_j, p_j) : \psi_j \in \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}, \|\psi_j\| = 1, \ 0 \le p_j \le 1, \ \sum_j p_j = 1 \\ \text{s.t.} \ \rho = \sum_j p_j |\psi_j\rangle \langle \psi_j| \right\}$$

Property: $\mathcal{E}(\rho) = 0 \Leftrightarrow \rho = \sum_{j} p_{j} |\psi_{j}^{A}\rangle \langle \psi_{j}^{A}| \otimes |\psi_{j}^{B}\rangle \langle \psi_{j}^{B}|$ (separable state)

Representation of $\mathcal{E}(\rho)$ if A = B = spin 1/2 [Wootters PRL97]

 $\mathcal{E}(\rho) = h(C(\rho)), \quad C(\rho) \in [0,1]$ concurrence, h increasing 0...1

 \Rightarrow concurrence is good measure of entanglement; explicit form

$$C(\rho) = \max\{0, D(\rho)\}, \qquad D(\rho) = \sqrt{\nu_1} - \left[\sqrt{\nu_2} + \sqrt{\nu_3} + \sqrt{\nu_4}\right]$$

where $\nu_1 \ge \nu_2 \ge \nu_3 \ge \nu_4 \ge 0$ are eigenvalues of matrix

$$\xi := \rho(\sigma^y \otimes \sigma^y) \overline{\rho}(\sigma^y \otimes \sigma^y)$$

with

$$\sigma^y = \left[\begin{array}{cc} 0 & \mathbf{i} \\ -\mathbf{i} & 0 \end{array} \right]$$

Some previous results

- (A) [Yu-Eberly PRL'04] $S_1 + R_1 || S_2 + R_2$ $R_{1,2}$ zero temperature cavities $(\sum_k \omega_k a_k^{\dagger} a_k)$, local energy exchange, Markovian master equation approximation **Results**
 - Decay of entanglement: $C(\rho(t)) \leq e^{-\gamma t} C(\rho(0))$
 - Entanglement sudden death: $\exists \rho(0)$ s.t. $C(\rho(0)) > 0$ but $C(\rho(t)) = 0$ $\forall t \ge t_d$
 - $\exists \rho(0)$ s.t. $C(\rho(t)) > 0 \ \forall t < \infty$

([Yu-Eberly PhysRevB'03] S_1, S_2 in classical noises: \exists decay of entanglement and \exists disentanglement free subspaces.)

(B) [Bellomo et al. PRL'07] $S_1 + R_1 || S_2 + R_2$ Non-markovian regime (reservoir correl. time = 100 system relax. time) **Results**

• Death and revival of entanglement: initial entanglement dies and stays zero for a while, then reappears and builds up to maximum, decreases and dies, reappears and so on.

(C) [Braun PRL'02] $S_1 + S_2 + R$ R harm. osci. heat bath T > 0, collective energy conserving interaction (explicitly solvable model) **Results**

• Creation of entanglement: $\exists \ \rho(0) \ {\rm s.t.} \ C(\rho(0)) = 0 \ {\rm but} \ C(\rho(t)) > 0$ for small times

(D) [Paz et al. PRL'08] Spin \rightarrow harm. osci. in environment of harm. osci.

Observe: Thermalization \Rightarrow sudden death of entanglement.

Thermalization: $\lim_{t\to\infty} \rho_t = \rho_\infty = \rho^\beta + O(\lambda)$, where $\rho^\beta = Z_\beta^{-1} e^{-\beta H_S}$

 ho^{β} has neighbourhood of non-entangled states of size $O(1/\text{Tre}^{-\beta H_{\text{S}}})$

 \rightarrow Temperature fixed, λ small: sudden death

(!) However, λ fixed and T sufficiently small: entanglement can persist for all times [Paz et al. PRL'08]

Goal: Estimate entanglement death times (1st scenario).

Model

Two spins 1/2 coupled to local and collective reservoirs,

$$H = B_1 S_1^z + B_2 S_2^z + H_{R_1} + H_{R_2} + H_{R_0} + W$$

energy exchange terms λ, μ , energy conserving terms κ, ν Magnetic fields: $0 < B_1 < B_2$ s.t. $B_2 \neq 2B_1$ (avoids degeneracies)

- Transition energies: $\{0, \pm B_1, \pm B_2, \pm (B_2 B_1), \pm (B_1 + B_2)\}$
- Matrix element clusters: C_1, \ldots, C_5

$$\gamma_{\text{therm}} = \min_{j=1,2} \left\{ (\lambda_j^2 + \mu_j^2) \sigma_g(B_j) \right\} + O(\alpha^4)$$

$$\gamma_2 = \frac{1}{2} (\lambda_1^2 + \mu_1^2) \sigma_g(B_1) + \frac{1}{2} (\lambda_2^2 + \mu_2^2) \sigma_g(B_2)$$

$$-Y_2 + (\kappa_1^2 + \nu_1^2) \sigma_f(0) + O(\alpha^4)$$

$$\gamma_5 = (\lambda_1^2 + \mu_1^2) \sigma_g(B_1) + (\lambda_2^2 + \mu_2^2) \sigma_g(B_2)$$

$$+ \left[(\kappa_1 + \kappa_2)^2 + \nu_1^2 + \nu_2^2 \right] \sigma_f(0) + O(\alpha^4)$$

$$\begin{split} \sigma_f(\omega) &= \coth(\beta \omega/2) J_f(\omega), \ J_f(\omega) \propto \omega^2 \int_{S^2} |f(\omega, \Sigma)|^2 \mathrm{d}\Sigma \quad \text{spectral density} \\ Y &= Y(\kappa, \mu, \sigma(B), r) \text{ complicated function} \end{split}$$

- Thermalization rate depends on energy-exchange coupling only.
- Purely energy-exchange interactions: $\kappa_j = \nu_j = 0 \Rightarrow$ rates depend symmetrically on local and collective influence through $\lambda_j^2 + \mu_j^2$.
- Purely energy-conserving interactions: $\lambda_j = \mu_j = 0 \Rightarrow$ rates do not depend symmetrically on local and collective terms.
- Dominant dynamics: only initially populated clusters have nontrivial dynamics
- Pure initial state $\psi_0 = a |++\rangle + b |--\rangle$

$$\rho_{0} = \begin{bmatrix} p & 0 & 0 & u \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \overline{u} & 0 & 0 & 1-p \end{bmatrix} \Rightarrow \rho_{t} = \begin{bmatrix} x_{1}(t) & 0 & 0 & u(t) \\ 0 & x_{2}(t) & 0 & 0 \\ 0 & 0 & x_{3}(t) & 0 \\ \overline{u}(t) & 0 & 0 & x_{4}(t) \end{bmatrix} + O(\alpha^{2})$$

Marco Merkli

- Initial concurrence: $C(\rho_0) = 2\sqrt{p(1-p)}$
- Dynamics

$$x_{1}(t) = pA_{t}(11;11) + (1-p)A_{t}(11;44)$$

$$x_{2}(t) = pA_{t}(22;11) + (1-p)A_{t}(22;44)$$

$$\vdots$$

$$u(t) = e^{it\varepsilon_{2}(B_{1}+B_{2})}u(0)$$

 $A_t(kk;ll) \leftarrow$ resonance energies bifurcating out of e = 0. Leading terms:

$$\delta_2 = (\lambda_1^2 + \mu_1^2)\sigma_g(B_1), \quad \delta_3 = (\lambda_2^2 + \mu_2^2)\sigma_g(B_2), \quad \delta_4 = \delta_2 + \delta_3$$

Leading term of $\operatorname{Im} \varepsilon_{2(B_1+B_2)}$:

$$\delta_5 = \delta_2 + \delta_3 + [(\kappa_1 + \kappa_2)^2 + \nu_1^2 + \nu_2^2]\sigma_f(0)$$

Theorem. Take coupling s.t. $\delta_2, \delta_3 > 0$ (thermalization). There is a positive constant α_0 (independent of p) s.t. if $0 < \alpha \leq \alpha_0 \sqrt{p(1-p)}$, then we have the following.

(A) Entanglement survival: Concurrence $C(\rho_t) > 0$ for all $t \leq t_A$,

$$t_A := \frac{1}{\max\{\delta_2, \delta_3\}} \ln\left[1 + C_A \alpha^2\right],$$

for some constant $C_A > 0$ (independent of p, α).

(B) Entanglement death: Concurrence $C(\rho_t) = 0$ for all $t \ge t_B$,

$$t_B := \max\left\{\frac{1}{\delta_5}\ln\left[C_B\frac{\sqrt{p(1-p)}}{\alpha^2}\right], \frac{1}{\delta_2 + \delta_3}\ln\left[C_B\frac{p(1-p)}{\alpha^2}\right]\right\},\$$

for some constant $C_B > 0$ (independent of p, α).

Marco Merkli

Discussion

- Result gives disentanglement bounds for true dynamics of qubits
- Disentanglement time *finite* since $\delta_2, \delta_3 > 0$ (implying thermalization). If system does not thermalize then it can happen that entanglement stays nonzero for all times (it may decay or stay constant).
- Rates δ are of order α^2 . Both t_A and t_B increase with decreasing coupling strength.

• Bounds are not optimal. Disentanglement bound depends on both kinds of couplings and each coupling decreases t_B (the bigger the noise the quicker disentanglement dies). Entanglement survival time bound does not depend on the energy-conserving couplings.

Entanglement creation

Braun [PRL 02]: energy conserving collective coupling, initial unentangled pure state

$$rac{1}{\sqrt{2}}(\ket{+}-\ket{-})\otimes rac{1}{\sqrt{2}}(\ket{+}+\ket{-})$$

Explicitly solvable model: concurrence creation, death and revival (Peres-Horodecki criterion)

Dynamics in resonance approximation:

• Purely energy-exchange coupling

In resonance approx., $[\rho_t]_{mn}$ depends on $\lambda^2 + \mu^2$ only \Rightarrow Creation of entanglement under collective and local energy-exchange dynamics is same in this approx. But no concurrence creation for purely local interaction. So true concurrence is $O(\lambda^2)$ for all times.

• Purely energy-conserving coupling

Can expect creation of concurrence (solvable model)

• Full coupling

Matrix elements evolve as complicated functions of all coupling parameters, effects of different interactions are correlated.

Numerical results on concurrence creation

Amount of entanglement created is *independent* of coupling κ ; peak at $t_0 \approx 0.5 \kappa^{-2}$; revival of entanglement $t_1 \approx 2.1 \kappa^{-2}$

Switching on local (energy conserving) coupling:

- \bullet creation of entanglement reduced
- if local coupling exceeds collective one \Rightarrow no concurrence is created

Energy-exchange collective and local interactions: $\lambda = \mu$ (symmetric); $\kappa = 0.02$ (collective, conserving), $\nu = 0$ (local, conserving)

- entanglement creation is reduced and peak time t_0 slightly reduced
- revival suppressed for increasing λ
- small times: density matrix in resonance approx. has partly negative eigenvalues (as Caldeira-Legget, Unruh-Zurek); numerics not reliable (non-smooth behavior in λ)

Outline of resonance approach

Consider observable $A \in B(\mathcal{H}_S)$. Initial density matrix is represented by the vector ψ_0 in GNS space $\langle A \rangle_0 = \langle \psi_0, A \otimes \mathbf{1}_S \otimes \mathbf{1}_{\vec{R}} \psi_0 \rangle$. Full dynamics implemented by group $e^{itL_{\alpha}} \cdot e^{-itL_{\alpha}}$. The self-adjoint generator

$$L_{\alpha} = L_{\rm S} + L_{\vec{\rm R}} + W_{\alpha} = L_0 + W_{\alpha}$$

is called the *Liouville operator*.

$$\langle A \rangle_t = \langle \psi_0, \mathrm{e}^{\mathrm{i} t L_\alpha} \left[A \otimes \mathbf{1}_{\mathrm{S}} \otimes \mathbf{1}_{\mathbf{\vec{\mathrm{R}}}} \right] \mathrm{e}^{-\mathrm{i} t L_\alpha} \psi_0 \rangle.$$

Convenient trick:

$$\exists K_{\alpha} \text{ s.t. } e^{\mathrm{i}tL_{\alpha}}Ae^{-\mathrm{i}tL_{\alpha}} = e^{\mathrm{i}tK_{\alpha}}Ae^{-\mathrm{i}tK_{\alpha}} \text{ and } K_{\alpha}\psi_0 = 0.$$

Standard way of constructing K_{α} given L_{α} , observable algebra and reference vector ψ_0 (modular theory of von Neumann algebras).

$$\langle A \rangle_t = -\frac{1}{2\pi \mathrm{i}} \int_{\mathbf{R}-\mathrm{i}} \mathrm{e}^{\mathrm{i}tz} \langle \psi_0, (K_\alpha(\theta) - z)^{-1} \left[A \otimes \mathbb{1}_{\mathrm{S}} \otimes \mathbb{1}_{\vec{\mathrm{R}}} \right] \psi_0 \rangle \mathrm{d}z,$$

where $\theta \mapsto K_{\alpha}(\theta)$ is a spectral deformation (translation) of K_{α} :

$$K_{\alpha}(\theta) = U(\theta)K_{\alpha}U(\theta)^{-1} = L_0 + \theta N + I_{\alpha}(\theta).$$

• Uncovering resonances: $\operatorname{Im} \theta > 0$ fixed, $\alpha \ll \operatorname{Im} \theta$, then eigenvalues $\varepsilon_e^{(s)}$ bifurcating (α) out of real eigenvalues of L_0 are independent of θ .

• Analytic perturbation theory: $\varepsilon_e^{(s)} = e + \delta_e^{(s)} + O(\alpha^4)$, where $\delta_e^{(s)}$ are eigenvalues of *Level Shift Operator* Λ_e ,

$$\Lambda_e \eta_e^{(s)} = \delta_e^{(s)} \eta_e^{(s)}$$

where $\Lambda_e = -P_e I_\alpha \overline{P}_e (L_0 - e + i0)^{-1} \overline{P}_e I_\alpha P_e$.

• Γ : simple closed contour enclosing all $\varepsilon_e^{(s)}$ but no continuous spectrum, associated Riesz projection

$$Q = \frac{-1}{2\pi i} \int_{\Gamma} (K_{\alpha}(\theta) - z)^{-1} dz$$

• $K_{\alpha}(\theta)$ reduced by Q, finite-dimensional block $QK_{\alpha}(\theta)Q$,

$$\langle A \rangle_t = \langle \psi_0, \mathrm{e}^{\mathrm{i}tQK_\alpha(\theta)Q} [A \otimes \mathbb{1}_{\mathrm{S}} \otimes \mathbb{1}_{\mathbf{\vec{R}}}] \psi_0 \rangle + O(\alpha^2 \mathrm{e}^{-\gamma t})$$

with
$$\gamma = \operatorname{Im} \theta - O(\alpha) > \max \operatorname{Im} \varepsilon_e^{(s)}$$

• $\psi_0 = \psi_{\mathrm{S}} \otimes \psi_{\vec{\mathrm{R}}}$. Set $\widetilde{V}(t) = \operatorname{Tr}_{\vec{\mathrm{R}}} \left[|\psi_{\vec{\mathrm{R}}} \rangle \langle \psi_{\vec{\mathrm{R}}} | e^{\mathrm{i}tQK_{\alpha}(\theta)Q} \right]$, then
 $\langle A \rangle_t = \langle \psi_{\mathrm{S}}, \widetilde{V}(t) [A \otimes \mathbb{1}_{\mathrm{S}}] \psi_{\mathrm{S}} \rangle + O(\alpha^2 \mathrm{e}^{-\gamma t})$

• WOLOG consider $\psi_{\rm S}$ trace state (cyclic and separating):

$$[V(t)A] \otimes \mathbb{1}_{\mathbf{S}} \ \psi_{\mathbf{S}} = \widetilde{V}(t)[A \otimes \mathbb{1}_{\mathbf{S}}]\psi_{\mathbf{S}}$$

defines reduced Heisenberg dynamics V of S (but V(t) not semigroup):

$$\left|\omega_{\rm S}^t(A) - \omega_{\rm S}^0(V(t)A)\right| \le C\alpha^2 {\rm e}^{-\gamma t}$$

 \bullet All resonance energies simple \Rightarrow

$$e^{itQK_{\alpha}(\theta)Q} = \sum_{e} \sum_{s=1}^{\text{mult}(e)} e^{it\varepsilon_{e}^{(s)}} |\chi_{e}^{(s)}\rangle \langle \widetilde{\chi}_{e}^{(s)}$$

with $K_{\alpha}(\theta)\chi_{e}^{(s)} = \varepsilon_{e}^{(s)}\chi_{e}^{(s)}$, $[K_{\alpha}(\theta)]^{*}\widetilde{\chi}_{e}^{(s)} = [\varepsilon_{e}^{(s)}]^{*}\widetilde{\chi}_{e}^{(s)}$, $\langle \chi_{e}^{(s)}, \widetilde{\chi}_{e'}^{(s')} \rangle = \delta_{e,e'}\delta_{s,s'}$

• Perturbation expansion

$$\widetilde{V}(t) = \sum_{e} \sum_{s=1}^{\text{mult}(e)} e^{it\varepsilon_e^{(s)}} \left[|\eta_e^{(s)}\rangle \langle \widetilde{\eta}_e^{(s)}| + O(\alpha^2) \right]$$

where $\eta_e^{(s)}$, $\widetilde{\eta}_e^{(s)}$ are eigenvectors of level shift operators.

• Action of reduced Heisenberg dynamics (Φ_j energy basis of the spins)

$$V(t)|\Phi_n\rangle\langle\Phi_m|$$

= $\sum_{e} \sum_{s=1}^{\text{mult}(e)} e^{it\varepsilon_e^{(s)}} \left[\sum_{k,l} \langle\Phi_l \otimes \Phi_k, \eta_e^{(s)}\rangle\langle\widetilde{\eta}_e^{(s)}, \Phi_n \otimes \Phi_m\rangle|\Phi_l\rangle\langle\Phi_k| + O(\alpha^2) \right]$

scalar products vanish unless $E_l - E_k = e = E_n - E_m$, so

$$\omega_{\rm S}(V(t)|\Phi_n\rangle\langle\Phi_m|) = \sum_{s=1}^{\operatorname{mult}(E_n - E_m)} e^{it\varepsilon_{E_n - E_m}^{(s)}} \sum_{(k,l)\in\mathcal{C}(E_m - E_n)} \langle\Phi_l\otimes\Phi_k,\eta_{E_n - E_m}^{(s)}\rangle$$
$$\times \langle\widetilde{\eta}_{E_n - E_m}^{(s)}, \Phi_n\otimes\Phi_m\rangle \ \omega_{\rm S}(|\Phi_l\rangle\langle\Phi_k|) + O(\alpha^2)$$
$$= \sum_{(k,l)\in\mathcal{C}(E_n - E_m)} A_t(m,n;k,l)\omega_{\rm S}(|\Phi_l\rangle\langle\Phi_k|) + O(\alpha^2).$$