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1 OPEN QUANTUM SYSTEMS

Open system S: connected to environment R

S = system of interest, e.g. a few spins

Environment R (“reservoir”): large compared to S

- characterized by macroscopic quantities (T, µ, ρ, ...)

- dissipation, irreversible processes

irreversibility↔ size of R ↔ large times

Coupling S↔ R: induces irreversible processes of S

e.g. S approaches temperature of R

Three classes of systems built from R, S

1) systems close to equilibrium ←− DECOHERENCE

2) systems far from equilibrium

3) repeated interaction systems
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1) S + R: systems close to equilibrium

Example: array of qubits (quantum register) interacting

with a substrate

Effects: thermalization and decoherence

Thermalization: S + R −→ equilibrium of coupled sys-

tem, as t→∞

Decoherence: disappearence of phase relations
∑

j,k

cj,k|ψj〉〈ψk| −→
∑

n

pn|ψn〉〈ψn|, as t→∞

⇒ Suppression of quantum effects
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2) S + R1 + R2: systems far from equilibrium

Example: junction of two pieces of metal

Phenomena:

- approach of Non-Equilibrium Stationary State (NESS)

S + R1 + R2 −→ NESS, as t→∞

- fluxes of energy/matter, entropy production

d

dt
〈energy of R1〉NESS

∝ T2 − T1

〈entropy production〉
NESS

> 0
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3) S + C, C = E1 + E2 + · · · : Repeated interaction

systems

Example: One-Atom Maser1

Phenomena & applications:

- approach of asymptotic state (periodic, RIAS)

- control of S by variation of interaction

- monitoring of S
1Meschede et al, PRL 54, 551 (1985)
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2 DECOHERENCE

Open quantum system S + R:

−Hilbert space H = HS ⊗ HR

−pure state ψ ∈ H, ‖ψ‖ = 1

−observables self-adjoint operators on H

−average 〈A〉 = 〈ψ,Aψ〉

−Hamiltonian H = HS +HR + λv

(λ ∈ R: coupling constant, v: interaction S↔ R)

Evolution: ψt = e−itHψ (Schrödinger equation)

General state: density matrix ρ =
∑

n pn|ψn〉〈ψn|,

ρt = e−itHρeitH

Average of A in state ρ at time t: 〈AS〉t = TrR+S(ρtA)

Reduction to system S: A = AS ⊗ 1lR ⇒

〈AS〉t = TrS+R(ρt(AS ⊗ 1lR) ) = TrS(ρtAS)

Reduced density matrix of S: ρt = TrR(ρt)

(trace taken over HR)
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Matrix representation in fixed basis {ϕ}Nj=1 of HS

[ρt]m,n := 〈ϕm, ρtϕn〉

A definition of decoherence: vanishing of off-diagonals as

t→∞,

lim
t→∞

[ρt]m,n = 0, ∀m 6= n.

Decoherence = basis dependent notion of disappearance

of correlations,

ρt =
∑

m,n

cm,n(t)|ϕm〉〈ϕn| −→
∑

m

pm(t)|ϕm〉〈ϕm|,

as t→∞.

Class of explicitly solvable models:

Non-demolition models, HS conserved: processes of

absorption and emission of quanta of the reservoir by the

system S are suppressed. To enable such processes, need

[HS, v] 6= 0. But then will also have thermalization!

ρ(β, λ): equilibrium state of total system at tempera-

ture T = 1/β

Thermalization: for any observable A of total system,

TrS+R(ρtA) −→ TrS+R(ρ(β, λ)A), as t→∞
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This implies

ρt → ρ∞(β, λ) := TrR(ρ(β, λ)), as t→∞

Expansion of ρ∞(β, λ) in coupling constant:

ρ∞(β, λ) = ρ∞(β, 0) +O(λ)

where ρ∞(β, 0) is Gibbs state of system S. Now Gibbs

state (density matrix) is diagonal in energy basis (HS),

but correction term O(λ) is not, in general.

⇒ Even if S is initially in incoherent superposition

of energy eigenstates, it will acquire some “residual

coherence” of order O(λ) during the process of ther-

malization.

⇒ Define decoherence as decay of off-diagonals of ρt to

limit values (= off-diagonals of ρ∞(β, λ))

In (vast) literature on this topic we have encountered

only

• models with energy-conserving interactions (which

are explicitly solvable)

• models with markovian approximations (master equa-

tions, Lindblad dynamics, with uncontrolled errors)
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Our goal:

Describe decoherence for systems which may

also exhibit thermalization, in a rigorous fash-

ion (controlled perturbation expansions)

Main tool: dynamical resonance theory based on com-

plex deformations and recent progress in theory of open

quantum systems

9



3 RESULTS ON DECOHERENCE

S: N -level system, energies {Ej}
N
j=1

R: free massless Bose field (ω(k) = |k|, spatially ∞

extended)

Standard coupling: λv = λG⊗ ϕ(g)

For observables A of S we set

〈A〉t := TrS(ρtA)

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉tdt

Theorem 1. There is a λ0 > 0 s.t. the following

statements hold for |λ| < λ0.

1. 〈〈A〉〉∞ exists for all A

2. We have

〈A〉t − 〈〈A〉〉∞ =
∑

ε 6=0

eitεRε(A) +O(λ2e−ωt),

where the ε are resonance energies, 0 ≤ Imε <

ω, and Rε(A) are linear functionals of A which

depend on the initial state ρt=0.

3. Let e be an eigenvalue of the operator HS ⊗ 1lS −

1lS ⊗ HS (acting on HS ⊗ HS). For λ = 0 each
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ε coincides with one of the e and we have the

following expansion for small λ

ε ≡ ε(s)
e = e− λ2δ(s)

e +O(λ4).

The δ
(s)
e ∈ C are eigenvalues of explicit matrices,

satisfying Im(δ
(s)
e ) ≤ 0.

Furthermore, we have

Rε(A) =
∑

(m,n)∈Ie

κm,nAm,n +O(λ2),

with Ie = {(m,n) | Em − En = e}, and where

Am,n is the (m,n)-matrix element of A and the

numbers κm,n depend on the initial state.

Discussion.

• Detailed picture of dynamics: resonance energies ε

and functionals Rε can be calculated for concrete

• In absence of interaction (λ = 0) we have ε = e ∈ R.

Depending on interaction, each resonance energy ε may
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migrate into upper complex plane, or it may stay on real

axis, as λ 6= 0.

• Averages 〈A〉t approach their ergodic means 〈〈A〉〉∞
if and only if Imε > 0 for all ε 6= 0. In this case, conver-

gence is on time scale [Imε]−1. Otherwise 〈A〉t oscillates.

• Sufficient condition for decay: Imδ
(s)
e < 0 (and λ

small).

12



4 APPLICATION TO QUBIT (SPIN 1/2)

HS = C
2, HS = diag(E1, E2)

Let

∆ = E2 − E1 > 0, ϕ1 =

[

1

0

]

, ϕ2 =

[

0

1

]

Coupling operator

v =

[

a c

c b

]

⊗ ϕ(g)

Theorem 1 =⇒ For all t ≥ 0,

[ρt]1,1 − 〈〈|ϕ1〉〈ϕ1|〉〉∞ = eitε0(λ)[C0 +O(λ2)]

+eitε∆(λ)O(λ2) + eitε−∆(λ)O(λ2)

+O(λ2e−tω)

[ρt]1,2 − 〈〈|ϕ2〉〈ϕ1|〉〉∞ = eitε∆(λ)[C0 +O(λ2)]

+eitε0(λ)O(λ2) + eitε−∆(λ)O(λ2)

+O(λ2e−tω)

C0, C∆: explicit constants, depend on initial state ρt=0

Have explicit expansion of resonance energies ε.
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Thermalization time: ωth := [Imε0(λ)]−1

Decoherence time: ωdec := [Imε∆(λ)]−1

ωdec

ωth
=

1

2

[

1 +
(b− a)2

|c|2
C(T )

]

+O(λ2),

where C(T ) ∼ T for small T
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5 DYNAMICAL RESONANCE THEORY

1. Resolvent representation

Observable A of system S:

〈A〉t = TrS[ρtA]

= TrS+R[ρtA]

=
〈

ψ0, e
itKAψ0

〉

In last step, we pass to the representation Hilbert space

of system (the GNS Hilbert space), where initial density

matrix is represented by a vector ψ0.

Resolvent representation

eitK =
−1

2πi

∫

R−i

(K − z)−1eitzdz

⇒ 〈A〉t =
−1

2πi

∫

R−i

〈

ψ0, (Kλ − z)
−1Aψ0

〉

eitzdz (1)

2. Uncovering resonances

Deformation transformation: U(ω) = e−iωD, “genera-

tor of translations D” (explicit)

Transformed generator of dynamics

Kλ(ω) = U(ω)KλU(ω)−1 = L0 + ωN + λI(ω)
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U(ω) unitary for ω ∈ R ⇒ spec(Kλ) =spec(Kλ(ω))

Kλ(ω) analytic for ω ∈ C, |Im ω| < 2πT

spec(Kλ(ω)) varies as Im(ω) does ⇒ spectral defor-

mation

U(ω)ψ0 = ψ0 & analyticity of Kλ(ω) & (1) ⇒

〈A〉t =
−1

2πi

∫

R−i

〈

ψ0, (Kλ(ω)− z)−1Aψ0

〉

eitzdz

The point: spectrum of Kλ(ω) much easier to analyze

than that of Kλ! K0(iω
′) = L0 + iω′N :

spec(K0(iω
′)) = ({Ei − Ej}i,j=1,...,N) ∪n≥1 (iω′n + R).

Gap of size ω′ separating eigenvalues from the continuous

spectrum of K0(ω) ⇒ can follow location of eigenvalues
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by simple (analytic) perturbation theory, provided λ is

small compared to ω′

Theorem 1.1 Fix ω′ > 0. There is a constant c0 >

0 s.t. if |λ| ≤ c0/β then, for all ω with Imω > ω′, the

spectrum of Kλ(ω) in the complex half-plane {Imz <

ω′/2} is independent of ω and consists purely of the

distinct eigenvalues

{ε(s)
e (λ) | e ∈ spec(LS), s = 1, . . . , ν(e)},

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the

eigenvalue e. Moreover, we have limλ→0 |ε
(s)
e (λ)−e| =

0 for all s = 1, . . . , ν(e), and we have Imε
(s)
e (λ) ≥ 0.

Also, the continuous spectrum of Kλ(ω) lies in the

region {Imz ≥ 3ω′/4}.
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3. Pole approximation

Deform contour

z = R− i 7→ z = R + iω′/2

⇒ pick up residues of poles of integrand, sitting at the

resonance energies ε
(s)
e (λ)

C
(s)
e : small circle around ε

(s)
e not enclosing any other point

of the spectrum of Kλ(ω)

⇒ 〈A〉t =
∑

e

ν(e)
∑

s=1

eitε
(s)
e

〈

ψ0, Q
(s)
e Aψ0

〉

+O(λ2e−ω
′t/2)
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Q
(s)
e : (non-orthogonal) Riesz projections

Q(s)
e = Q(s)

e (ω, λ) =
−1

2πi

∫

C
(s)
e

(Kλ(ω)− z)−1dz

Finally

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉tdt

=
∑

s′: ε
(s′)
0 =0

〈

ψ0, Q
(s′)
0 Aψ0

〉

All other terms vanish in the ergodic mean limit.

In specific models (like qubit), one can calculate (pertur-

batively in λ, to any order) resonance energies ε
(s)
e and

projection operators Q
(s)
e , and one obtains estimates on

difference 〈A〉t − 〈〈A〉〉∞.

Evolution of reduced density matrix [ρt]m,n is obtained

from these formulas by using A = |ϕn〉〈ϕm|.

———– THE END ———–

19


