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Questions Addressed

Model
• N spins 1/2, not directly interacting, coupled to local and collective
bosonic heat reservoirs

• Each interaction has energy conserving and energy exchange channel

Program
• Start with a microscopic Hamiltonian description

Trace out all degrees of freedom but those of a single spin

Obtain evolution of the reduced density matrix of a single spin.

• Find relaxation and dephasing rates for single spin

• Find evolution of total magnetization

• Compare this evolution to the Bloch equation
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Outline of Main Results

Single spin dynamics

We derive rigorous expression for reduced density matrix of single spin:
main term describing relaxation and dephasing, plus remainder term small
in couplings homogeneously in time

Single spin relaxation

We show: Single-spin relaxation rate given by

γrelax =
1
4

coth(βω/2)
{
λ2Jc(ω) + µ2J`(ω)

}
ω : spin frequency

λ, µ : strengths of energy exchange collective and local couplings

Jc,`(ω) : (collective, local) reservoir spectral densities

Only energy-exchange couplings contribute to this rate, effect of the local
and the collective reservoirs the same
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Single spin dephasing

We show: Single-spin dephasing rate given by

γdeph =
1
2
γrelax + γcons + γ′

• γcons : contribution from energy conserving local and collective
interactions, determined by spectral density at zero frequency

• γ′ : effect on dephasing of a single spin due to all other spins

[Time-dependence of single spin off-diagonal density matrix elements is complicated,

has not exponentially decaying contribution coming from the collective coupling; γ′

defined to be the reciprocal of time by which that quantity is reduced to half its initial

value]

• Explicit expression of γ′ not simple

• r = collective coupling
local coupling << 1 ⇒ γ′ = O(r2), indep. of N

• Large collective coupling ⇒ γ′ ∼ const.γrelax, for constant indep. of N
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Evolution of magnetization

Spins in homogeneous static magentic field pointing in z-direction

• We show: z-component of total magnetization vector relaxes to
equilibrium value at single-spin relaxation rate γrelax

→ In accordance with Bloch equation

• We show: Due to collective coupling, transverse total magnetic field
follows modified Bloch equation with time-dependent dephasing time
(T2 = T2(t)) and time-dependent effective magnetic field Bz,eff(t)

Renormalization of T2: for large times, Bloch equation becomes
stationary, with renormalized T2(∞) time

1
T2(∞)

=
1
2
γrelax + γcons + (N − 1)γ′′

Small ratio r collective/local coupling strenghts: γ′′ = O(r2)
• r ∼ N−1/2 : collective coupling gives finite renormalization of T2

• r ∼ N−1/2−ε : no collective effect is visible in dephasing

• r ∼ N−1/2+ε : drastic reduction of T2? Perturbation theory not applicable!
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Two-species spin system, N = NA +BB

We show:

• z-component of magnetization of either species relaxes with single-spin
relaxation time (associated to that species)

• Transverse magnetization of either species dephases following modified
Bloch equation with time-dependent T2-time and effective magnetic field

• For large times, T2-time of species A approaches

1
T2,A(∞)

=
1
2
γrelax,A + γcons,A + (NA − 1)γ′′A +NBγ

′′
B,

with γA = O(r2
A), γB = O(r2

B) for small ratio rA, rB of the collective and
local coupling constants

• Total magnetization is sum of that of species A and B. It is the sum of
two terms decaying (relaxing and dephasing) at different rates so we cannot
associate to it a total relaxation time or a total dephasing time
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Model

Total Hamiltonian

H = −h̄
N∑
n=1

ωnS
z
n +

N∑
n=1

HRn +HR

+
N∑
n=1

λnS
x
n ⊗ φc(gc) +

N∑
n=1

κnS
z
n ⊗ φc(fc)

+
N∑
n=1

µnS
x
n ⊗ φn(gn) +

N∑
n=1

νnS
z
n ⊗ φn(fn)

ωn > 0: frequency of spin n

Sz =
1
2

[
1 0
0 −1

]
and Sx =

1
2

[
0 1
1 0

]
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• HR: Hamiltonian of the bosonic collective reservoir

HR =
∫

R3
h̄|k|a∗(k)a(k)d3k

a(k), a∗(k) Bosonic annihilation, creation operators: [a(k), a∗(l)] = δ(k− l)
• HRn: same Hamiltonian but of n-th individual reservoir

• Bosonic field operator

φ(h) =
1√
2

∫
R3
{h(k)a∗(k) + h(k)∗a(k)}d3k.

• Coupling constants λn, κn, µn, νn
• Reservoir spectral density

Jh(ω) := πω2

∫
S2
|h(ω,Σ)|2dΣ

[Re bCh(ω) = Jh(ω) coth(βω/2), where bCh(ω) is Fourier transform of symmetrized

correlation function Ch(t) = 1
2[〈φ(h)eitHRφ(h)e−itHR〉β+〈eitHRφ(h)e−itHRφ(h)〉β]]
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Assumptions

Unperturbed Bohr energies: energy differences of Hspin = −h̄
∑N
n=1 ωnS

z
n

e(σ, τ) = −h̄
2

N∑
n=1

ωn(σn − τn) σ = (σ1, . . . , σN) ∈ {−1,+1}N

Gap ∆ := smallest non-zero difference |e(σ, τ)− e(σ′, τ ′)|
α : size of biggest coupling constant (local/collective, conserving/exchange)

(A) Small couplings relative to N

N2α2 << ∆

– homogeneous field: ∆ = h̄ω ⇒ α ∼ 1/N
– equidistributed energies: ∆ ∼ N2−2N ⇒ α ∼ e−N (!)
– condition needed in technical estimates; from heurisitc physical conside-
rations would expect condition α2

cN << ω and α` << ω (local, collective
coupling constants), ω typical spin frequency
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(B) Spin frequencies {ωn} are uncorrelated

If e(σ, τ) = e(σ′, τ ′) then σn − τn = σ′n − τ ′n for all n.

– Breaks permutation symmetry (→ easier mathematical analysis)

– Nearly homogeneous magnetic field: ωn = ω+ δωn, fluctuation δωn (e.g.
uniform distribution in some interval

– Physical quantities continuous in δωn, so can take δωn → 0 in those
quantities to get case of homogeneous magnetic field (ωn = ω constant)

(C) Regularity of form factors

h : any of the coupling functions fc, gc, fn, gn in the Hamiltonian H.

h(|k|,Σ) = |k|pe−|k|
m
h′(Σ) (spherical coordinates)

with p = −1/2 + n, n = 0, 1, 2, . . . and m = 1, 2, and where h′ is any
angular function.
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Reduced Dynamics of Single Spin ρ
(1)
t

Exactly solvable model

• Energy-conserving local (ν`) and collective (κc) interactions only

• Homogeneous spins (each same)

• Initial state: product of identical single spin states, 0 ≤ p ≤ 1 (for |↑〉)

[ρ(1)
t ]21 = [ρ(1)

0 ]21 e−iωt e−ν
2
`Γ`(t)−κ2

cΓc(t)︸ ︷︷ ︸
decay

C(N, t)︸ ︷︷ ︸
oscillation

collective effect encoded in

C(N, t) = [pe−iκ2
cS(t) + (1− p)eiκ2

cS(t)]N−1

Decoherence function: Γ`,c(t) −→ tJ̃`,c(0) (t large) Spectral Density

Oscillation: S(t) −→ at, where a = −1
2 P.V.

∫
R3
|f(p)|2
|p| d3p Lamb Shift

|C(N, t)| oscillates between 0 and 1, frequency κ2
c|a|/π
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Switching on energy exchange interactions

• Local (µ`) and collective (νc) energy exchange interactions generate
relaxation process of populations & modify dephasing rate

• System not explicitly solvable; achievement of resonance perturbation
theory: isolate main term from remainders (coupling constants α << 1)
homogeneously in time

Relaxation process:

[ρ(1)
t ]11 =

eβω/2

e−βω/2 + eβω/2︸ ︷︷ ︸
equilibrium

+ e−tγrelax
[
p− eβω/2

e−βω/2 + eβω/2
]︸ ︷︷ ︸

approach to equilibrium

+O(α2)

with

γrelax =
1
4
[
λ2
cJc(ω) + µ2

`J`(ω)
]

coth(βω/2)

Does not depend on number of spins N
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Dephasing process:

[ρ(1)
t ]21 = [ρ(1)

0 ]21 e−iωt e−ν
2
`Γ`(t)−κ2

cΓc(t) e−
t
2γrelax eitX C(N, t)︸ ︷︷ ︸

additional decay and oscillation

+O(α2)

X ∈ R: ‘Lamb shift’ symmetric in both collective interactions (indep. N)

• C(N, 0) = 1
• |C(N, t)| ≤ e(N−1)[−γt+c′], where γ ≥ 0 (depends on all interactions
except conserving local), γ and c′ > 0 indep. of N

• If the energy conserving collective coupling and at least one of the energy
exchange couplings (local or collective) are nonzero, then γ > 0.

• |C(N, t)| decays to 1/2 (half its initial value) no later than at time 1/γ′,

γ′ = γ

[
ln 2
N − 1

+ c′
]−1

∼ γ/c′ (N large)
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• Total dephasing rate: γdeph = 1
2γrelax + γcons + γ′

γrelax =
1
4
[
λ2
cJc(ω) + µ2

`J`(ω)
]

coth(βω/2)

γcons =
1

2β
[
κ2
cJ̃c(0) + ν2

` J̃`(0)
]

γ′ = γ

[
ln 2
N − 1

+ c′
]−1

• Behaviour of γ′: Set (κc cons coll, λc exch coll, µ` exch local)

r =
κ2
c

λ2
c + µ2

`

• Collective coupling weak: r ∼ 0 ⇒ γ′ ∼ const.r|κc|, with const. indep of
N .

• Collective coupling strong: r ∼ 1 ⇒ γ′ ∼ const.λ2
cJc(ω), with const.

indep of N .

µαµε 2011 14



Evolution of Magnetization

Total spin operator: ~S =

 Sx

Sy

Sz

 , Sx,y,z =
N∑
j=1

Sx,y,zj

Longitudinal component: Sz (direction of static external magnetic field)

Transverse component: S−j = Sxj − iSyj

Homogeneous magnetic field ~B = −ω~ez

Longitudinal magnetization component: Resonance method ⇒

〈Sz〉t =
N

2
tanh(βω/2)[1− e−tγrelax] + e−tγrelax〈Sz〉0 +O(α2)

〈·〉0 : initial spin state, product of identical single-spin states

γrelax = 1
4

[
λ2
cJc(ω) + µ2

`J`(ω)
]

coth(βω/2) single-spin relaxation rate
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Total longitudinal magnetization relaxes to equilibrium value at single-spin
relaxation rate

Above expression is time-integrated version of Bloch equation for
longitudinal magnetization component for homogeneous magnetic field
~B = −ω~ez,

d
dt
〈Sz〉t = − 1

τrelax

[
〈Szj 〉t −

N

2
tanh(βω/2)

]
T1 time is T1 = τrelax = 1/γrelax and does not depend on collective effects,
nor on number of spins
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Transverse magnetization component: Resonance method ⇒

〈S−〉t = e−it(ω−X)e−t[
1
2γrelax+γcons] [D(t)]N−1︸ ︷︷ ︸

collective effect

〈S−〉0 +O(α2)

X : single-spin ‘Lamb shift’ contribution

γrelax, γcons : single-spin decays

“Ordinary” transverse Bloch equation would read

d
dt〈S

−〉t = − 1
T2
〈S−〉t + iBz〈S−〉t

Differentiating the true 〈S−〉t get modifed Bloch equation

d
dt〈S

−〉t = −Γ(t)〈S−〉t + iB(t)〈S−〉t
Γ(t) = 1

2γrelax + γcons − (N − 1) Re d
dt lnD(t)

B(t) = −ω +X + (N − 1) Im d
dt lnD(t)

D(t) : single-spin quantity (indep. of N), decay & oscillations
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Transverse magnetization satisfies modified Bloch equation, where T2-time
and effective magnetic field are time-dependent.

We have T2 = 1/Γ(t), Bz,eff = B(t), with

Γ(t) = 1
2γrelax + γcons − (N − 1) Re d

dt lnD(t)

B(t) = −ω +X + (N − 1) Im d
dt lnD(t)

Both time-dependencies have factor N : collective effects

Deviation of “static” Bloch equation given by d
dt lnD(t)

r = κ2
c

µ2
`
<< 1 (energy exch. coll. weak rel. to energy exch. local) ⇒

∣∣∣∣ d
dt

lnD(t)
∣∣∣∣ ≤ C|r|, lim

t→∞

d
dt

lnD(t) = 4ir
tanh(βω/2)

1− e−βω
γrelax +O(r2)
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For small collective coupling T2(t) and B(t) stabilize as t→∞,

T2(∞)−1 =
1
2
γrelax + γcons + (N − 1)γ′′, γ′′ = O(r2)

• r ∼ N−1/2 ⇒ finite renormalization of T2-time

• r ∼ N−1/2−ε (any ε > 0) ⇒ no collective effect visible in dephasing

• r ∼ N−1/2+ε (any ε > 0) above expression suggests that collective
interaction may decrease T2-time drastically for large N . But perturbation
theory not valid in this regime!
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Multi-species inhomogeneity

• N spins grouped into two classes A,B characteized by different properties
ωA, ωB, etc.

• Relative sizes N = NA +NB
• Relative magnetization

~SA =
∑

j in classA

~Sj

• Resonance method ⇒ (modulo O(λ2) terms)

〈SzA〉t =
NA
2

tanh(βωA/2)[1− e−tγrelax,A] + e−tγrelax,A〈SzA〉0

〈S−A〉t = e−it(ωA−XA)e−t[
1
2γrelax,A+γcons,A][DA(t)]NA−1[DB(t)]NB〈S−A〉0

Relaxation: single-spin rate γrelax,A
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Dephasing: modified Bloch equation

d
dt
〈S−A〉t = −ΓA(t)〈S−A〉t + iBA(t)〈S−A〉t

with

ΓA(t) =
1
2
γrelax,A + γcons,A

−(NA − 1) Re
d
dt

lnDA(t)−NB Re
d
dt

lnDB(t)

BA(t) = −ωA +XA + (NA − 1) Im
d
dt

lnDA(t) +NBIm
d
dt
DB(t)

Renormalization of dephasing time (weak coll. coupling and large times):

ΓA(t)→ T2,A(∞)−1 =
1
2
γrelax,A + γcons,A + (NA − 1)γ′′A +NBγ

′′
B

with γA,B = O(r2
A,B)
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– Total magnetization: 〈S〉t = 〈SA〉t + 〈SB〉t
– z-component relaxes as sum of two exponentially decaying quantities with
different rates (corresponding to A and B); cannot associate to it a single
decay rate

– Total transverse magnetization is sum of that of species A and B; each
contribution evolves according to its modified Bloch equation; for large
times dephasing time approaches renormalized constant value: sum of two
terms decaying at different rates; total transverse magnetization does not
have single decay rate
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Outline of Resonance Method

1. Hilbert space representation (GNS)

General density matrix: ρ =
∑
n pn|ψn〉〈ψn|, ψn ∈ H

Identify: |ψ〉〈χ| 7→ ψ ⊗ χ∗ ∈ H ⊗H

Density matrix represented as vector in new Hilbert space:

ρ 7→
∑
n

pnψ ⊗ ψ∗ ∈ H ⊗H

〈A〉 = TrH(ρA) = 〈Ω, (A⊗ 1l)Ω〉H⊗H
with

Ω =
∑
n

√
pnψn ⊗ ψ∗n

N spins plus local and collective reservoirs ⇒ H,Ω

〈A〉t = 〈Ω, eitK(A⊗ 1l)Ω〉H⊗H K : “Liouville operator”
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2. Spectral analysis of K and dynamics

K = K0 + αV

K0 = Hspins ⊗ 1lspins − 1lspins ⊗Hspins +Kreservoirs

α : interaction parameter, V : interaction operator

Meaning of eigenvalues e(σ, τ) : under free dynamics (α = 0)

〈σ|ρspins(t)|τ〉 = e−ite(σ,τ)〈σ|ρspins(0)|τ〉
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What happens as α 6= 0?

• matrix elements of ρspin do not evolve independently any longer (but in
“clusters”)

• dispersive reservoirs induce irreversibility: e(σ, τ) become complex
energies ε(σ, τ) (Imε : decay rates)

Within each block:

〈σ|ρspin(t)|τ〉 =
∑

σ′, τ ′ in block

At(σ, τ ;σ′, τ ′) 〈σ′|ρspin(0)|τ ′〉+O(α2)

At(σ, τ ;σ′, τ ′) =
mult e(σ,τ)∑

s=1

eitε
(s)
e C(s)
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spectrum of K as α 6= 0

K →
∑
e,s

eitε
(s)
e |ξ(s)

e 〉〈ξ̃(s)
e |+O(α2)

Averages become

〈A〉t =
∑
e,s

eitε
(s)
e 〈Ω|ξ(s)

e 〉〈ξ̃(s)
e | (A⊗ 1l) |Ω〉 +O(α2)

Analysis of structure of ξ, ε gives final result
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