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Abstract

We present a rogorous analysis of the phenomenon of

decoherence for general N -level systems coupled to reser-

voirs of free massless bosonic fields. We apply our gen-

eral results to the specific case of the qubit. Our approach

does not involve master equation approximations and ap-

plies to a wide variety of systems which are not explicitly

solvable.

Results presented here are obtained in collaboration with I.M.
Sigal and G.P. Berman:

• Decoherence and Thermalization, Phys. Rev. Lett. 98,
130401 (2007), quant-ph/0608181 (2006)

• Resonance theory of decoherence and thermalization, to ap-
pear in Ann. Phys. (2007), quant-ph/0702207.



1 INTRODUCTION

Open quantum system S + R:

Hilbert space: H = HS ⊗ HR

Hamiltonian: H = HS +HR + λv

λ ∈ R: coupling constant

v: interaction between S and R

Reservoir R is spatially infinitely extended =⇒ we have

to interpret HR andH in an appropriate limit sense (ther-

modynamic limit or limit of continuous modes).

Density matrix of total system: ρt

Reduced density matrix of S: ρt = TrR(ρt)

(trace taken over HR)

Let {ϕ}Nj=1 be fixed basis of HS, denote matrix elements

of ρ as

[ρt]m,n := 〈ϕm, ρtϕn〉

A definition of decoherence: the vanishing of off-diagonals

in the limit of large times,

lim
t→∞

[ρt]m,n = 0, ∀m 6= n.

2



This is a basis dependent notion of disappearance of cor-

relations,

ρt =
∑

m,n

cm,n(t)|ϕm〉〈ϕn| −→
∑

m

pm(t)|ϕm〉〈ϕm|,

as t→ ∞.

Example. N -level system with energy-conserving

coupling to Bose field (see 1 for qubit case, N = 2).

HS = C
N , HS = diag(E1, . . . , EN)

Interaction operator

v = G⊗ ϕ(g)

G = diag(γ1, . . . , γN)

ϕ(g) =
1√
2
[a∗(g) + a(g)]

a#(g): usual bosonic creation and annihilation operators,

smeared out with form factor g ∈ L2(R3, d3k)

[HS, H] = [HS, HS +HR + λv] = 0 =⇒ energy of small

system is conserved.

This model is exactly solvable!

1M.G. Palma, K.-A. Suominen, A. Ekert: Quantum computers
and dissipation, Proc. R. Soc. Lond. A 452, 567-584 (1996)
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Solution:

[ρt]m,n = [ρ0]m,ne
−it(Em−En)+iλ2αm,n(t),

where

αm,n(t) = (γ2
m − γ2

n)S(t) + i(γm − γn)
2Γ(t)

Γ(t) =

∫

R3
|g(k)|2 coth(β|k|/2)

sin2(|k|t/2)

|k|2 d3k

S(t) =
1

2

∫

R3
|g(k)|2 |k|t− sin(|k|t)

|k|2 d3k

⇒ Populations are constant: [ρt]m,m = [ρt]m,m.

⇒ Full decoherence occurs only if Γ(t) → ∞ as t→ ∞,

which depends on infrared behaviour of form factor (and

the space dimension).

Infrared behaviour characterized by g(k) ∼ |k|p as |k| ∼
0. Then

lim
t→∞

αm,n(t)

t
=

1

2
(γ2
m − γ2

n)
〈
g, |k|−1g

〉

+i(γm − γn)
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0 if p > 0

const. if p = −1/2

+∞ if p < −1/2
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This is a non-demolition model (HS conserved: pro-

cesses of absorption and emission of quanta of the reser-

voir by the system S are suppressed.

To enable such processes, need [HS, v] 6= 0. But then

expect that thermalization takes place as well.

ρ(β, λ): equilibrium state of total system at tempera-

ture T = 1/β

ρt=0: arbitrary initial density matrix (on H).

Thermalization: for any observable A of total system,

TrS+R(ρtA) −→ TrS+R(ρ(β, λ)A), as t→ ∞ (1)

This implies

ρt → ρ∞(β, λ) := TrR(ρ(β, λ)), as t→ ∞

Expansion of ρ∞(β, λ) in coupling constant:

ρ∞(β, λ) = ρ∞(β, 0) +O(λ)

where ρ∞(β, 0) is Gibbs state of system S. Now Gibbs

state (density matrix) is diagonal in energy basis (HS),

but correction term O(λ) is not, in general.
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⇒ Even if S is initially in incoherent superposition

of energy eigenstates, it will acquire some “residual

coherence” of order O(λ) during the process of ther-

malization.

⇒ Define decoherence as decay of off-diagonals of ρt to

limit values (= off-diagonals of ρ∞(β, λ))

In (vast) literature on this topic we have encountered

only

• models with energy-conserving interactions (which

are explicitly solvable)

• models with markovian approximations (master equa-

tions, Lindblad dynamics, with uncontrolled errors)

Our goal:

Describe decoherence for systems which may

also exhibit thermalization, in a rigorous fash-

ion (controlled perturbation expansions)

Main tool: dynamical resonance theory based on com-

plex deformations and recent progress in theory of open

quantum systems
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2 RESULTS

S: N -level system, energies {Ej}Nj=1

R: free massless Bose field (ω(k) = |k|, spatially ∞
extended)

Coupling: λv = λG⊗ ϕ(g)

Assume: a certain regularity condition on form factor

g(k) (to be specified below)

For observables A of S we set

〈A〉t := TrS(ρtA)

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉tdt

Theorem 1. There is a λ0 > 0 s.t. the following

statements hold for |λ| < λ0.

1. 〈〈A〉〉∞ exists for all A

2. We have

〈A〉t − 〈〈A〉〉∞ =
∑

ε 6=0

eitεRε(A) +O(λ2e−ωt), (2)

where the ε are resonance energies, 0 ≤ Imε <

ω, and Rε(A) are linear functionals of A which

depend on the initial state ρt=0.
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3. Let e be an eigenvalue of the operator HS ⊗ 1lS −
1lS ⊗ HS (acting on HS ⊗ HS). For λ = 0 each

ε coincides with one of the e and we have the

following expansion for small λ

ε ≡ ε(s)
e = e− λ2δ(s)

e +O(λ4).

The δ
(s)
e ∈ C are eigenvalues of so-called level shift

operators Λe, satisfying Im(δ
(s)
e ) ≤ 0.

Furthermore, we have

Rε(A) =
∑

(m,n)∈Ie

κm,nAm,n +O(λ2),

with Ie = {(m,n) | Em − En = e}, and where

Am,n is the (m,n)-matrix element of A and the

numbers κm,n depend on the initial state.
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We treat the resonances in setting of spectral deforma-

tion. This requires the following regularity condition

(A) The function

gβ(u, σ) :=

√
u

1 − e−βu
|u|1/2

{
g(u, σ) if u ≥ 0

eiφg(−u, σ) if u < 0

is such that ϑ 7→ gβ(u + ϑ, σ) has an analytic con-

tinuation, as a map C → L2(R× S2, du× dσ), into

{|ϑ| < ω}, for some ω > 0. Here, φ is an arbitrary

fixed phase.

Examples of admissible g:

g(k) = g1(σ)|k|pe−|k|2,

where p = −1/2 + n, n = 0, 1, 2, . . ., and g1(σ) =

eiφg1(σ).

Discussion. • Relation (2) gives detailed picture of

dynamics. Resonance energies ε and functionals Rε can

be calculated for concrete models, to arbitrary precision

(rigorous perturbation theory in λ).

• In absence of interaction (λ = 0) we have ε = e ∈ R.

Depending on interaction, each resonance energy ε may

migrate into upper complex plane, or it may stay on real

axis, as λ 6= 0.
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• Averages 〈A〉t approach their ergodic means 〈〈A〉〉∞
if and only if Imε > 0 for all ε 6= 0. In this case, conver-

gence is on time scale [Imε]−1. Otherwise 〈A〉t oscillates.

• Sufficient condition for decay: Imδ
(s)
e < 0 (and λ

small).

• Two processes drive the decay: energy-exchange pro-

cesses and energy preserving ones. The former are in-

duced by interactions enabling processes of absorption

and emission of field quanta with energies correspond-

ing to the Bohr frequencies of S (Fermi Golden Rule

Condition). Energy preserving interactions suppress

such processes, allowing only for a phase change of the

system during the evolution (“phase damping”).

• Even if initial density matrix is a product of sys-

tem and reservoir density matrices, at t > 0 it is not of

product form. Evolution creates system-reservoir entan-

glement.

• If system has property of return to equilibrium, then

[ρ∞]m,n = δm,n
e−βEm

TrS(e−βHS)
+O(λ2)

⇒ Gibbs distribution is obtained by first letting t→ ∞,

then λ→ 0.
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3 APPLICATION TO QUBIT (SPIN 1/2)

HS = C
2, HS = diag(E1, E2)

Let

∆ = E2 − E1 > 0, ϕ1 =

[
1

0

]
, ϕ2 =

[
0

1

]

Coupling operator

v =

[
a c

c b

]
⊗ ϕ(g)

Theorem 1 =⇒ For all t ≥ 0,

[ρt]1,1 − 〈〈|ϕ1〉〈ϕ1|〉〉∞ = eitε0(λ)[C0 +O(λ2)]

+eitε∆(λ)O(λ2) + eitε−∆(λ)O(λ2)

+O(λ2e−tω)

[ρt]1,2 − 〈〈|ϕ2〉〈ϕ1|〉〉∞ = eitε∆(λ)[C0 +O(λ2)]

+eitε0(λ)O(λ2) + eitε−∆(λ)O(λ2)

+O(λ2e−tω)

C0, C∆: explicit constants, depend on initial state ρt=0
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Expansion of resonance energies:

ε0(λ) = iλ2|c|2ξ(∆) +O(λ4)

ε∆(λ) = ∆ + λ2R +
i

2
λ2

[
|c|2ξ(∆) + (b− a)2ξ(0)

]
+O(λ4)

ε−∆(λ) = −ε∆(λ)

where

ξ(η) :=

∫

R3
coth

(
β|k|

2

)
|g(k)|2δ(η − |k|)d3k

and

R =
b2 − a2

2

〈
g, |k|−1g

〉

+
|c|2
2

P.V.

∫

R×S2
u2 coth

(
β|k|

2

) |g(|u|, σ)|2
u− ∆

du dσ

Thermalization time: ωth := [Imε0(λ)]−1

Decoherence time: ωdec := [Imε∆(λ)]−1

ωdec

ωth
=

1

2

[
1 +

(b− a)2

|c|2
ξ(0)

ξ(∆)

]
+O(λ2),

note: ξ(0)
ξ(∆) ∼ T for small T

Example Spin-Boson model:

HS = −1
2
~∆0σx + 1

2
ǫ σz
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σ: Pauli matrices, ∆0: bare tunneling matrix element, ǫ:

bias

Coupling operator: v = σz ⊗ ϕ(g)

⇒ determines matrix elements a, b, c in general formula-

tion:
(b− a)2

|c|2 = 16
ǫ2

~2∆2
0

⇒ Decoherence time becomes smaller relative to ther-

malization time if bias ǫ is decreased, or if tunneling pa-

rameter ∆0 is increased

Remarks 1. If system has property of return to equi-

librium, then

〈〈|ϕ1〉〈ϕ1|〉〉∞ =
e−βE1

ZS,β
+O(λ2)

〈〈|ϕ2〉〈ϕ1|〉〉∞ = O(λ2)

we recover the Gibbs law by first taking t → ∞, then

λ→ 0

2. ξ(0) > 0 for IR behaviour g(k) ∼ |k|−1/2, ξ(0) = 0

for more regular IR behaviour. Moreover, ξ(0) ∼ T and

ξ(∆) ∼ const. > 0, as T ∼ 0.
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4 DYNAMICAL RESONANCE THEORY

Consider observable A of S:

〈A〉t = TrS [ρt A]

= TrS+R [ρt A⊗ 1lR]

=
〈
ψ0, e

itL [A⊗ 1lS ⊗ 1lR] e−itLψ0

〉
(3)

In last step, we pass to the representation Hilbert space

of system (the GNS Hilbert space), where initial density

matrix is represented by a vector ψ0; L is (standard)

Liouville operator

Explicitly: H = HS ⊗ HS ⊗ F ⊗F
Take ψ0 = ΩS,β ⊗ ΩR,β, where ΩS/R,β are equilibrium

states of S,R at temperature T = 1/β

Dynamics is implemented by eitL · e−itL

Trick from analysis of open systems far from equilibrium:

there is a (non self-adjoint) generator K s.t.

eitL · e−itL = eitK · e−itK and

Kψ0 = 0

⇒ replace propagators in (3) by e±itK , use e−itKψ0 = ψ0,
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and (formal) relation

eitK =
−1

2πi

∫

R−i

(K − z)−1eitzdz

⇒ we obtain resolvent representation

〈A〉t = (4)
−1

2πi

∫

R−i

〈
ψ0, (Kλ − z)−1 [A⊗ 1lS ⊗ 1lR]ψ0

〉
eitzdz

Uncovering resonances:

Notation: second quantization of a one-body operator

O acting on single-particle wave functions of variable k ∈
R

3:

dΓ(O) =

∫

R3
a∗(k)Oa(k) d3k

Total number operator:

N = dΓ(1l) ⊗ 1lR + 1lR ⊗ dΓ(1l)

acts on HR = F(L2(R3, d3k)) ⊗F(L2(R3, d3k))

Deformation transformation: U(ω) = e−iωD, generator

D = dΓ(ϑ) ⊗ 1lR − 1lR ⊗ dΓ(ϑ),

where ϑ = i
2(k̂ · ∇ + ∇ · k̂), with k̂ = k

|k|.
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Transformed generator Kλ(ω) = U(ω)KλU(ω)−1:

Kλ(ω) = L0 + ωN + λI(ω)

L0 = HS ⊗ 1lS − 1lS ⊗HS

+dΓ(|k|) ⊗ 1lR − 1lR ⊗ dΓ(|k|)
(have explicit formula also for I(ω))

U(ω) unitary for ω ∈ R ⇒ spec(Kλ) =spec(Kλ(ω))

Kλ(ω) analytic for ω ∈ C, |Im ω| < 2π/β.

spec(Kλ(ω)) varies as Im(ω) does ⇒ spectral defor-

mation

U(ω)ψ0 = ψ0 & analyticity of Kλ(ω) & (4) ⇒

〈A〉t = (5)
−1

2πi

∫

R−i

〈
ψ0, (Kλ(ω) − z)−1 [A⊗ 1lS ⊗ 1lR]ψ0

〉
eitzdz

May take ω = iω′, ω′ > 0

The point: spectrum of Kλ(ω) much easier to analyze

than that of Kλ! K0(ω) = L0 + iω′N :

spec(K0(ω)) = ({Ei − Ej}i,j=1,...,N) ∪n≥1 (iω′n + R).

Eigenvalues Ei − Ej: eigenvectors ϕi ⊗ ϕj ⊗ ΩR,β
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lines iω′n + R: continuous spectrum

Gap of size ω′ separating eigenvalues from the continuous

spectrum of K0(ω) ⇒ can follow location of eigenvalues

by simple (analytic) perturbation theory, provided λ is

small compared to ω′

Theorem 1.1 Fix ω′ > 0. There is a constant c0 >

0 s.t. if |λ| ≤ c0/β then, for all ω with Imω > ω′, the

spectrum of Kλ(ω) in the complex half-plane {Imz <

ω′/2} is independent of ω and consists purely of the

distinct eigenvalues

{ε(s)
e (λ) | e ∈ spec(LS), s = 1, . . . , ν(e)},

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the

eigenvalue e. Moreover, we have limλ→0 |ε(s)
e (λ)−e| =

0 for all s = 1, . . . , ν(e), and we have Imε
(s)
e (λ) ≥ 0.

Also, the continuous spectrum of Kλ(ω) lies in the

region {Imz ≥ 3ω′/4}.

By construction: Kλ(ω)ψ0 = 0 (so set ε
(1)
0 = 0)
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Pole approximation: deform contour

z = R − i 7→ z = R + iω′/2

⇒ pick up residues of poles of integrand, sitting at the

resonance energies ε
(s)
e (λ)

C(s)
e : small circle around ε

(s)
e not enclosing any other point

of the spectrum of Kλ(ω)
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〈A〉t = (6)

−1

2πi

∑

e

ν(e)∑

s=1

∫

C(s)
e

eitz
〈
ψ0, (Kλ(ω) − z)−1[A⊗ 1lS ⊗ 1lR]ψ0

〉
dz +R

where

R =
−1

2πi

∫

R+iω′/2
eitz

〈
ψ0, (Kλ(ω) − z)−1(A⊗ 1lS ⊗ 1lR)ψ0

〉
dz

One shows: R = O(λ2e−tω
′/2)

Can replace eitz by eitε
(s)
e in (6)
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〈A〉t =
∑

e

ν(e)∑

s=1

eitε
(s)
e

〈
ψ0, Q

(s)
e [A⊗ 1lS ⊗ 1lR]ψ0

〉

+O(λ2e−ω
′t/2) (7)

where Q
(s)
e are (non-orthogonal) projections

Q(s)
e = Q(s)

e (ω, λ) =
−1

2πi

∫

C(s)
e

(Kλ(ω) − z)−1dz

If ε
(s)
e is simple eigenvalue of Kλ(ω):

Q(s)
e = |χ(s)

e 〉〈χ̃(s)
e |

where vectors χ
(s)
e and χ̃

(s)
e satisfy

Kλ(ω)χ(s)
e = ε(s)

e χ
(s)
e and (Kλ(ω))∗χ̃(s)

e = ε
(s)
e χ̃

(s)
e

and are normalized as
〈
χ

(s)
e , χ̃

(s)
e

〉
= 1.

Finally

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉tdt

=
∑

s′: ε(s
′)

0 =0

〈
ψ0, Q

(s′)
0 (A⊗ 1lS ⊗ 1lR)ψ0

〉

20



All the other terms vanish in the ergodic mean limit.

If 〈A〉t has limit as t→ ∞ (Imε
(s)
e (λ) > 0 for ε

(s)
e (λ) 6=

0) then 〈〈A〉〉∞ is just that limit.

It may happen that 〈A〉t does not have limit, but 〈〈A〉〉∞
always exists.

⇒ Limit term in expansion (7) is 〈〈A〉〉∞ and we obtain

desired result.

In specific models (like qubit), one can calculate (pertur-

batively in λ, to any order) resonance energies ε
(s)
e and

projection operators Q
(s)
e , and one obtains estimates on

difference 〈A〉t − 〈〈A〉〉∞.

Evolution of reduced density matrix [ρt]m,n is obtained

from these formulas by using A = |ϕn〉〈ϕm|.
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