Dynamics of open quantum systems The resonance theory

Marco Merkli

Memorial University St. John's, Newfoundland, Canada

ICTP: Ubiquitous Quantum Physics: the New Quantum Revolution

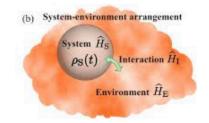
Trieste, February 25, 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The results presented are based on collaborations with

G.P. Berman (Los Alamos Nat'l Lab)I.M. Sigal (Toronto)M. Könenberg (Industry)H. Song (Tianjin)

Open quantum systems



System-reservoir models, Hilbert space

 $\mathcal{H}=\mathcal{H}_S\otimes\mathcal{H}_R$

In this talk: dim $\mathcal{H}_S < \infty$, environment in thermal equilibrium. Interacting Hamiltonian

$$H_{\lambda} = \underbrace{H_{S} + H_{R}}_{H_{0}} + \lambda H_{I}$$

Reduced density matrix $\rho_S(t)$ defined by taking partial trace

$$\rho_{\mathcal{S}}(t) = \operatorname{Tr}_{\mathcal{H}_{R}}\left(\mathrm{e}^{-\mathrm{i}t\mathcal{H}_{\lambda}}(\rho_{\mathcal{S}}\otimes\rho_{R}) \, \mathrm{e}^{\mathrm{i}t\mathcal{H}_{\lambda}}\right)$$

<u>Definition</u> of **dynamical map** V(t):

$$V(t)\rho_S = \rho_S(t)$$

 \circ is not a group: V(t+s)
e V(t)V(s)

 $\circ \forall t, V(t)$ is completely positive, trace preserving (CPT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Quantum dyn. semigroup = CPT + semigroup

Markovian approximation

$$V(t) pprox \mathrm{e}^{t\mathcal{L}}$$
 (?)

- Physically adequate if
 - system-reservoir interaction is small and
 - reservoir correlations decay quickly in time
- \bullet Desirable b/c dynamics accessible via spectrum of ${\cal L}$
- Starting from basic postulates of quantum theory (Hamiltonian system-reservoir models, not from effective equations), the Markovian approximation is **hard to derive rigorously** (perturbation theory: large volume, small coupling, all times...)

• Van Hove limit ('weak coupling limit'): $\forall a > 0$

$$\lim_{\lambda \to 0} \sup_{0 \le \lambda^2 t < a} \| V(t) - e^{t(\mathcal{L}_0 + \lambda^2 \mathcal{K})} \| = 0$$
[Davies '73, '74]

Inconvenience: Constraint $\lambda^2 t < \text{const.}$

- Dynamical resonance theory: $\forall \lambda \text{ small}, \forall t \geq 0$:
 - 1. 'Resonance expansion of dynamics', valid for system *and reservoir* observables
 - 2. CPT approximation for system dynamics
 - 3. Asymptotically exact CPT approximation

Setup

$$\mathcal{H} = \mathcal{H}_{S} \otimes \mathcal{H}_{R} = \mathbb{C}^{d} \otimes \left(\underbrace{\bigoplus_{n \geq 0} \mathcal{L}^{2}_{\mathrm{sym}}(\mathbb{R}^{3n}, d^{3n}k)}_{\mathrm{Fock space}} \right)$$

Hamiltonian:

$$H = H_S + H_R + \lambda \ G \otimes \left(a^*(g) + a(g)\right)$$

$$H_{\mathcal{S}} = \sum_{j=1}^{d} E_j |\phi_j
angle \langle \phi_j|, \quad ext{and} \quad H_{\mathcal{R}} = \int_{\mathbb{R}^3} |k| \, a^*(k) a(k) d^3k$$

Coupling constant $\lambda \in \mathbb{R}$, coupling operator = matrix GDynamics:

$$\alpha_{\lambda}^{t}(\mathcal{O}) = \mathrm{e}^{\mathrm{i}tH_{\lambda}}\mathcal{O}\mathrm{e}^{-\mathrm{i}tH_{\lambda}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Dynamics of system observable X: $\omega_0(lpha_\lambda^t(X\otimes \mathbf{1}_R))$
- Isolated system dynamics:

$$\alpha_{\mathcal{S}}^{t}(|\phi_{k}\rangle\langle\phi_{\ell}|) = \mathrm{e}^{\mathrm{i}t(\mathcal{E}_{k} - \mathcal{E}_{\ell})}|\phi_{k}\rangle\langle\phi_{\ell}| \cong \mathrm{e}^{\mathrm{i}t\mathcal{L}_{\mathcal{S}}}(\phi_{k}\otimes\phi_{\ell})$$

where L_S is system *Liouville operator* (on $\mathcal{H}_S \otimes \mathcal{H}_S$)

$$L_S = H_S \otimes \mathbf{1}_S - \mathbf{1}_S \otimes H_S$$

As λ ≠ 0: Effect of coupling to reservoir is to turn eigenvalues of L_S into complex resonances: E_k - E_ℓ → ε_{k,ℓ}(λ)

• $\varepsilon_{k,\ell}(\lambda)$ are analytic in λ , accessible by perturbation theory

Result 1: Resonance expansion of the dynamics

Theorem 1. For all
$$\lambda$$
 small and $t \ge 0$,

$$\left\|V(t)
ho - W(t)
ho -
ho_{\mathcal{S},eta,\lambda}
ight\| \leq \mathcal{C}|\lambda|\mathrm{e}^{-\gamma(\lambda)t}$$

 $\rho_{S,\beta,\lambda} =$ coupled (interacting) equilibrium state reduced to S

$$\begin{split} \mathcal{W}(t) &= \sum_{k,\ell} \mathrm{e}^{\mathrm{i}t\varepsilon_{k,\ell}(\lambda)} \mathcal{P}_{k,\ell} = O(\mathrm{e}^{-\gamma(\lambda)t}) \\ \gamma(\lambda) &= \min_{k,\ell} \left\{ \mathrm{Im}\,\varepsilon_{k,\ell}(\lambda) \right\} \geq 0 \end{split}$$

Resonance expansion is accurate to $O(\lambda)$ for all times and exact as $t \to \infty \checkmark$ but **does not have CPT semigroup structure** \checkmark

Result 2: Markovian approximation for all times

Mild assumption on decay rate

$$\gamma(\lambda) = \lambda^2 \gamma_{\rm FGR} + O(\lambda^3)$$

with $\gamma_{\rm FGR} > 0$.

Expanding W(t) for small λ gives the following result.

Theorem 2. For all λ small and $t \ge 0$,

$$\left\|V(t)-\mathrm{e}^{t(\mathcal{L}_{\mathcal{S}}+\lambda^{2}\mathcal{K})}\right\|\leq C|\lambda|.$$

- $\mathcal{L}_{S} = -i[H_{S}, \cdot]$ and K are commuting (super-)operators
- K entirely constructed from lowest order approx. of $\varepsilon_{k,\ell}(\lambda)$
- $e^{t(\mathcal{L}_S + \lambda^2 K)}$ is a CPT with invariant state

$$\mathrm{e}^{t(\mathcal{L}_{\mathcal{S}}+\lambda^{2}\mathcal{K})}\rho_{\mathcal{S},\beta,0}=\rho_{\mathcal{S},\beta,0}$$

Result 3: Asymptotically exact markovian approx.

We construct a CPT semigroup generator

$$M(\lambda) = \mathcal{L}_{S} + \lambda^{2}M_{2} + \lambda^{3}M_{3} + \cdots$$

 M_1 , M_2 ,... calculable by perturbation theory in λ , such that:

Theorem 3. For all λ small and $t \ge 0$,

$$ig\| oldsymbol{V}(t) - \mathrm{e}^{t \mathcal{M}(\lambda)} ig\| \leq oldsymbol{C} ig(|\lambda| + \lambda^2 t ig) \mathrm{e}^{-\lambda^2 t \gamma_{\mathrm{FGR}}}$$

- Asymptotically exact, $\lim_{t \to \infty} \left(V(t) e^{t \mathcal{M}(\lambda)} \right) = 0$
- BUT: remainder not small for 'intermediate times' $t pprox 1/\lambda^2$

Population dynamics: better result!

Matrix element of system operator A in energy basis φ_k (of H_S):

$$[A]_{k,\ell} \equiv \langle \varphi_k, A\varphi_\ell \rangle$$

Population of system level E_k at time t: $[V(t)\rho]_{k,k}$

Theorem 4. For all λ small, all k and $t \ge 0$, $\left| [V(t)\rho]_{k,k} - [e^{tM(\lambda)}\rho]_{k,k} \right| \le C|\lambda| (1+|\lambda|^3 t) e^{-\lambda^2 t \gamma_{\text{FGR}}}$

- Populations described asymptotically exactly by CPT semigroup
- AND: remainder small, $O(\lambda)$, for ALL TIMES !

Application: Excitation transfer process

When a molecule is excited electronically by absorbing a photon, it **luminesces** by emitting another photon (~ 1 nanosecond)

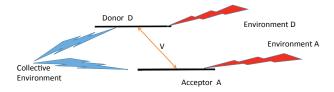
Fluorescence

In presence of another molecule ($\sim 1 - 10$ nm) the excitation can be swapped between the molecules (~ 1 picosecond).

Excitation transfer happens in *biological systems* (in chlorophyll molecules during photosynthesis)

Similar **charge transfer** (electron, proton) happens in *chemical* reactions: $D + A \rightarrow D^- + A^+$ (reactant and product)

Processes take place in **noisy environments** (molecular vibrations, protein and solvent degrees of freedom)



Local model (red) and collective model (blue) V: exchange or dipole-dipole interaction

D-A models: Marcus model \leftrightarrow spin-boson model

• Marcus model ⇔ *spin-boson model* (Xu-Schulten '94)

$$\mathcal{H}_{ ext{SB}} = \mathcal{V}\sigma_{x} + \epsilon\,\sigma_{z} + \mathcal{H}_{\mathcal{R}} + \lambda\sigma_{z}\otimesig(\mathsf{a}^{*}(h) + \mathsf{a}(h)ig)$$

Parameters:

Direct D-A coupling: V D-A energy difference: ϵ D-A \leftrightarrow environment coupling constant λ

• V, ϵ , λ parameter regime ?

Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II

Frank Műh, Dominik Lindorfer, Marcel Schmidt am Busch and Thomas Renger, Phys. Chem. Chem. Phys., **16**, 11848 (2014)

Stroma Our chlorophyll dimer: 615 606 608 604: Chla, $E^{a}_{exc} = 14.827 cm^{-1}$ = 1.8385 eV 606: Chlb, $E^{b}_{exc} = 15.626 cm^{-1}$ = 1.9376 eVLumen $\epsilon = E^{b}_{exc} - E^{a}_{exc} = 99.1 meV$ V = 8.3 meV

Our chlorophyll dimer is weakly coupled: $\frac{V}{\epsilon} \approx 0.08 \ll 1$.

シー・ション シー・シー・シー シスマ

For the weakly coupled dimer and at high temperature

$$V \ll \epsilon, \qquad k_B T \gg \hbar \omega_c$$

formal time-dependent perturbation theory (Legget et al., '87) gives Marcus formula

Donor population
$$\propto e^{-\gamma_{\rm M} t}$$
, $\gamma_{\rm M} = \frac{V^2}{4} \sqrt{\frac{\pi}{T \epsilon_{\rm rec}}} e^{-\frac{(\epsilon - \epsilon_{\rm rec})^2}{4T \epsilon_{\rm rec}}}$

 $\epsilon_{
m rec} = {
m reconstruction\ energy} \propto \lambda^2 \ {
m is} pprox \epsilon$

- Marcus theory works for large (any) interaction strength with environment ($\epsilon_{\rm rec}$) but is heuristic
- Rudolph A. Marcus received **1992 Nobel Prize in Chemistry** "for his contributions to the theory of electron transfer reactions in chemical systems"

Our contribution to 'Marcus theory'

- 1. We develop **dynamical resonance theory** for dynamics of the weakly coupled dimer ($V \ll \epsilon$), valid for all times and any reservoir coupling strength (λ)
- 2. We extract from it **validity of exponential decay law** and rates of relaxation and decoherence¹
- 3. We consider **individual coupling strengths** λ_D and λ_A of donor and acceptor to environments

Initial states, reduced dimer state

Intital states unentangled,

$$\rho_{\rm in} = \rho_{\mathcal{S}} \otimes \rho_{\mathcal{R}}$$

 ρ_S = arbitrary, ρ_R reservoir equil. state at temp. $T = 1/\beta > 0$ Reduced dimer density matrix

$$\rho_{\mathcal{S}}(t) = \operatorname{Tr}_{\operatorname{Reservoir}}\left(\mathrm{e}^{-\mathrm{i}tH}\rho_{\mathrm{in}}\mathrm{e}^{\mathrm{i}tH}\right)$$

Donor population

$$p(t) = \langle \varphi_1, \rho_S(t) \varphi_1 \rangle = [\rho_S(t)]_{11}, \qquad p(0) \in [0, 1]$$

Goal: Find $t \mapsto p(t)$ (& derive Marcus formula!)

Theorem 5. For |V| small enough and for arbitrary λ_D , λ_A , $t \ge 0$, the donor population satisfies

$$oldsymbol{p}(t) = oldsymbol{p}_\infty + \mathrm{e}^{-\gamma t} \left(oldsymbol{p}(0) - oldsymbol{p}_\infty
ight) + O(1/t),$$

where

$$p_{\infty} = rac{1}{1+\mathrm{e}^{-eta\epsilon_{\mathrm{ren}}}} + O(V)$$

γ ∝ V²
ϵ_{ren} is the renormalized dimer energy difference
p_∞ = equil. value @ renormalized dimer energies

- Remainder sub-dominant for $\gamma t \ll 1$, i.e., $t \ll V^{-2}$
- Remainder polynomially decaying, not exponentially

Expression for relaxation rate

$$\gamma = V^2 \lim_{r \to 0_+} \int_0^\infty e^{-rt} \cos(\epsilon_{\rm ren} t) \cos\left[\frac{(\lambda_D - \lambda_A)^2}{\pi} Q_1(t)\right] \\ \times \exp\left[-\frac{(\lambda_D - \lambda_A)^2}{\pi} Q_2(t)\right] dt$$

where
$$Q_1(t) = \int_0^\infty \frac{J(\omega)}{\omega^2} \sin(\omega t) \, d\omega, \quad Q_2(t) = \int_0^\infty \frac{J(\omega)(1 - \cos(\omega t))}{\omega^2} \coth(\beta \omega/2) \, d\omega$$

- $\gamma =$ true relaxation rate
- $k_BT \gg \hbar\omega_c \Rightarrow$ Generalized Marcus Formula for γ
- Symmetric case $\lambda_D = -\lambda_A \Rightarrow$ recover Marcus Formula

$$\gamma_{
m Marcus} = \left(\frac{V}{2}\right)^2 \sqrt{\frac{\pi}{T\epsilon_{
m rec}}} \ e^{-\frac{(\epsilon - \epsilon_{
m rec})^2}{4T\epsilon_{
m rec}}} \qquad (0 < \epsilon_{
m rec} \propto \lambda^2)$$

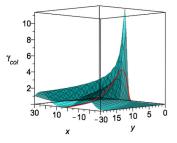
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Some numerical results

- Accuracy of generalized Marcus formula for high temp:
 - $-\omega_c/T \lesssim 0.1$ rates given by the gen. Marcus formula coincide extremely well ($\sim \pm 1\%$) with true values $\gamma \omega_c/T \gtrsim 1$ get serious deviations ($\gtrsim 30\%$)
- Asymmetric coupling can significantly increase transfer rate:

Surface =
$$\gamma$$

Red curve = symmetric coupling
 $x \propto \lambda_D^2 - \lambda_A^2$, $y \propto (\lambda_D - \lambda_A)^2$



Summary

- We create the dynamical resonance theory which
 - describes rigorously the dynamics of a system-reservoir complex
 - gives a CPT semigroup approximating system dynamics for all times to accuracy $O(\lambda)$
 - gives a CPT semigroup approximating population dynamics for all times to accuracy $O(\lambda)$ and is asymptotically exact
- We apply the theory to a D-A (dimer) in contact with thermal reservoir(s) and
 - derive the Marcus formula for the transition process
 - generalize the Marcus setup to inhomogeneous couplings

