Quantum Multi-time Measurements on Scattered Particles

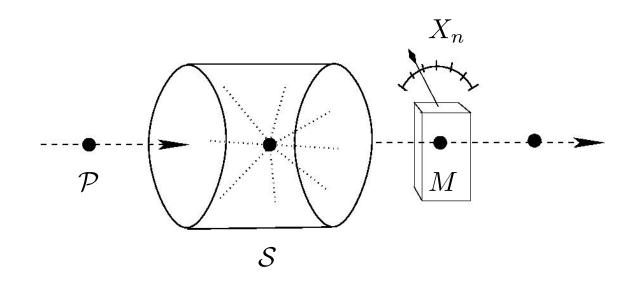
Marco Merkli

Department of Mathematics Memorial University St. John's, Canada

> In collaboration with Mark Penney

ICM 2012, Al Ain, March 11

The Problem



 $\begin{array}{ll} \mathcal{P} & : & \text{probe} \\ \mathcal{S} & : & \text{scatterer} \\ M & : & \text{measurement (operator)} \end{array} \right\} \quad \begin{cases} X_n \}_{n \geq 1} \text{ measurement outcomes} \\ X_n \in \operatorname{spec}(M) = \{m_1, \dots, m_r\} \end{cases}$

Questions

- Asymptotics: $P(X_n \text{ converges}) = ?, P(X_n \in A \text{ eventually}) = ?$
- Input-output relationship?
- Asymptotic state of S? Convergence speed?

Basic mechanism

- Interaction: τ (time), V (operator)
- Before scattering: probes are independent

• At scattering: probe n becomes correlated with S, which is correlated with probes k, $1 \le k \le n-1 \Rightarrow X_n$ are dependent; quantum entanglement

Ergodicity assumption

In absence of measurement the interaction is *effective*: S is driven to an asymptotic state (large times). This is observed in laboratory & is shown by theory to hold generically.

Consequence

Scatterer 'loses memory': S initiates convergence to asymptotic state during $m-l \Rightarrow$ random variables X_l and X_m are weakly correlated if $m-l \gg 1$.

Results

Theorem (Correlation decay). There are constants c > 0, $\gamma > 0$ such that, for all $A \in \sigma(X_k, \ldots, X_l)$, $B \in \sigma(X_m, \ldots, X_n)$, $1 \le k \le l < m \le n \le \infty$, we have

$$|P(A \cap B) - P(A)P(B)| \le c e^{-\gamma(m-l)}P(A).$$

Decaying correlations ⇒ Zero-One Law (Kolmogorov): Any event in tail sigma-algebra

$$\mathcal{T} = \bigcap_{k \ge 1} \sigma(X_k, X_{k+1}, \ldots),$$

 $A \in \mathcal{T}$, satisfied P(A) = 0 or P(A) = 1.

• Example: $A = \{X_k \text{ converges}\} \in \mathcal{T}$, so $P(X_k \text{ converges})$ is either zero or one. WHICH ONE IS IT?

P = 0 or P = 1: Perturbative approach

• V small ($||V|| \ll 1$), m a fixed possible measurement outcome • $P(X_n = m) = P_{in}(m) + O(V)$ • $P(X_k = m_k, X_l = m_l) = P(X_k = m_k)P(X_l = m_l) + O(V)$ $P(X_{n+1} = X_n) = \sum_m P(X_{n+1} = m, X_n = m)$ $= \sum_m P(X_{n+1} = m)P(X_n = m) + O(V)$ $= \sum_m P_{in}(m)^2 + O(V)$

So

$$\{0,1\} \ni P(X_{n+1} = X_n \text{ eventually}) \le \sum_m P_{\text{in}}(m)^2 + O(V)$$

<u>Conclusion</u>: $P(X_n \text{ converges}) = 0$ if the in-state is not localized with respect to M (if M has nonvanishing variance) and V is small.

Frequencies

• m: possible measurement outcome. Frequency of m:

$$f_m = \lim_{n \to \infty} \frac{1}{n} \mathbf{E} \big[\# k \in \{1, \dots, n\} : X_k = m \big]$$

• What is the effect of the scattering process on frequencies? Define

$$\overline{E}_m(\tau) = \frac{1}{\tau} \int_0^\tau \mathrm{e}^{\mathrm{i}sH} E_m \mathrm{e}^{-\mathrm{i}sH} \mathrm{d}s,$$

the time-averaged eigenprojection associated to $m \in \operatorname{spec}(M)$.

Theorem (Frequencies). The first order correction (in V) to the frequency f_m is the flux of the averaged eigenprojection associated to m,

$$f_m = P_{\rm in}(m) + \tau \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \omega_{\rm in} \otimes \omega_{\mathcal{S}} \Big(\mathrm{e}^{\mathrm{i}tH} \overline{E}_m(\tau) \mathrm{e}^{-\mathrm{i}tH} \Big) + O(V^2).$$

Note: the derivative term equals $i\tau\omega_{in}\otimes\omega_{\mathcal{S}}([V,\overline{E}_m(\tau)])$.

Marco Merkli

Mean

Mean value

$$\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$$

Theorem (Law of large numbers). There is a μ_{∞} such that

$$\lim_{n \to \infty} P(\overline{X}_n - \mu_\infty) = 0$$

Approach is constructive and non-perturbative. We can answer more subtle questions, *e.g.*, questions of large deviation type:

$$P(|\overline{X}_n - \mu_{\infty}| > \epsilon) \sim e^{-n\rho(\epsilon)} \qquad (n \to \infty),$$

with explicit $\rho(\epsilon)$.

Mathematical setup

- Hilbert space of pure states $\mathcal{H} = \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \cdots$
- Initial state $\rho_0 = \rho_S \otimes \rho_{in} \otimes \rho_{in} \otimes \cdots$

 $\rho_{\#}$: density matrices (trace-class, non-negative operators on $\mathcal{H}_{\#}$)

 \bullet Dynamics at time-step n

$$H_n = \sum_{k=1}^{\infty} H_{\mathcal{P},k} + H_{\mathcal{S}} + V_n$$

 $\mathit{V_n}:$ interaction operator acting on $\mathcal S$ and $\mathit{n}\text{-th}\ \mathcal P$

- Measurement observable $M \in \mathcal{B}(\mathcal{H}_{\mathcal{P}})$, self-adjoint. Eigenvalues m_j , spectral projections E_{m_j} .
- From principles of quantum mechanics:

$$P(X_1 = m_1, \dots, X_n = m_n)$$

= $\operatorname{Tr} \left(E_{m_n} e^{-i\tau H_n} \cdots E_{m_1} e^{-i\tau H_1} \rho_0 e^{i\tau H_1} E_{m_1} \cdots e^{i\tau H_n} E_{m_n} \right)$

Theorem (Representation of joint probabilities). We have

$$P(X_1 = m_1, \dots, X_n = m_n) = \langle \psi, T_{m_1} \cdots T_{m_n} \psi \rangle,$$

where T_m is a "reduced dynamics operator" (no measurement: T), the inner product is that of $\mathcal{H}_S \otimes \mathcal{H}_S$ and $\psi \in \mathcal{H}_S \otimes \mathcal{H}_S$ represents the initial state ρ_S . (Gelfand-Naimark-Segal, or Liouville Hilbert space.)

$$P(X_n = m \text{ eventually}) = P(\bigcup_{n \ge 1} \cap_{k \ge n} \{X_k = m\})$$

=
$$\lim_{n \to \infty} \lim_{k \to \infty} P(X_n = m, X_{n+1} = m, \dots, X_k = m)$$

=
$$\lim_{n \to \infty} \lim_{k \to \infty} \langle \psi, T^{n-1}(T_m)^{k-n} \psi \rangle$$

=
$$\langle \psi, \Pi \Pi_m \psi \rangle$$

 Π , Π_m : **Riesz spectral projections** of T, T_m associated to eigenvalue one

• From above theorem

$$P(X_l \in A, X_m \in B) = \langle \psi, T^{l-1}T_A T^{m-l-1}T_B \psi \rangle$$

• Ergodicity assumption implies that, for μ large,

$$T^{\mu} = |\psi\rangle\langle\psi^*| + O(\mathrm{e}^{-\gamma\mu})$$

for some $\gamma > 0$ and where $T\psi = \psi$, $T^*\psi^* = \psi^*$, $\langle \psi, \psi^* \rangle = 1$. Therefore

$$P(X_l \in A, X_m \in B) = \langle \psi, T^{l-1}T_A\psi \rangle \langle \psi^*, T_B\psi \rangle + O(e^{-\gamma(m-l)})$$

• First factor on right side is $P(X_l \in A)$, second one is

$$\langle \psi, (|\psi\rangle \langle \psi^*|) T_B \psi \rangle = \langle \psi, T^{m-1} T_B \psi \rangle + O(e^{-\gamma m}) = P(X_m \in B) + O(e^{-\gamma m})$$
$$\Rightarrow P(X_l \in A, X_m \in B) = P(X_l \in A) P(X_m \in B) + O(e^{-\gamma (m-l)})$$

