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The Problem

____.__ e
P
P robe
S scatterer {X, }n>1 measurement outcomes
X, €spec(M)=1{mq,....m
M measurement (operator) n € spec(M) = 1ma, ..., m;}
Questions

e Asymptotics: P(X,, converges) =7, P(X,, € A eventually) =7
e Input—output relationship?
e Asymptotic state of S7 Convergence speed?
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Basic mechanism

e Interaction: 7 (time), V' (operator)
e Before scattering: probes are independent

e At scattering: probe n becomes correlated with &, which is correlated
with probes k£, 1 < k < n—1 = X, are dependent; quantum entanglement

Ergodicity assumption

In absence of measurement the interaction is effective: S is driven to an
asymptotic state (large times). This is observed in laboratory & is shown
by theory to hold generically.

Consequence

Scatterer ‘loses memory': S initiates convergence to asymptotic state during
m — | = random variables X; and X,,, are weakly correlated if m — [ >> 1.

Marco Merkli 3



Results

Theorem (Correlation decay). There are constants ¢ > 0, v > 0 such
that, for all A € o(Xg,..., X)), B€ o(Xpm,...,. Xp), 1 <k<l<m<
n < 0o, we have

[P(ANB) — P(A)P(B)| < ce "™m=UP(A).

e Decaying correlations = Zero-One Law (Kolmogorov): Any event in tail
sigma-algebra

T = m O'(Xk,Xk_H, . .),

k>1

A € T, satisfied P(A) =0 or P(A) = 1.

e Example: A = { X} converges} € 7, so P(X} converges) is either zero
or one. WHICH ONE IS IT?
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P =0 or P = 1: Perturbative approach

e V small (||V|| << 1), m a fixed possible measurement outcome
e P(X, =m)= Pyn(m)+O(V)
° P(Xk = my, X; = ml) = P(Xk = mk)P(Xl = ml) + O(V)

P(Xpi1=X,) = Y P(Xpp1=m,X,=m)
= Y P(Xuy1=m)P(X,=m)+O(V)
= Y Pu(m)®>+0(V)

So
{0,1} 5 P(Xp41 = Xy, eventually) < Y~ Pon(m)* + O(V)

Conclusion: P(X,, converges) = 0 if the in-state is not localized with

respect to M (if M has nonvanishing variance) and V' is small.
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Frequencies

e m: possible measurement outcome. Frequency of m:

Jfm = lim lE[#kE{l,,n} Xk:m}

n—oo N,

e \What is the effect of the scattering process on frequencies? Define

En(T) = 1/ e E,e 5 ds,
0

T

the time-averaged eigenprojection associated to m € spec(M).

Theorem (Frequencies). The first order correction (in V') to the frequency
fm is the flux of the averaged eigenprojection associated to m,

fin = Pun(m) + 75

, it HE —itH 2
1| _ Win®ws (e E . (7)e ) + O(V~).

t=0

Note: the derivative term equals iTwi, ® wg([V,Em(T)]).
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Mean
Mean value

_ 1 —
XnZEFZlXj

Theorem (Law of large numbers). There is a o such that

lim P(X, — ftos) = 0

n—oo

Approach is constructive and non-perturbative. We can answer more subtle
questions, e.g., questions of large deviation type:

P(|X,, — pioo| > €) ~ e ") (n — 00),

with explicit p(e).
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Mathematical setup

e Hilbert space of pure states H=Hs Q Hp QHp & - --

e Initial state pg = ps ® pPin @ Pin D - - -

p+: density matrices (trace-class, non-negative operators on Hy)
e Dynamics at time-step n

H, =Y Hpy+Hs+V,
k=1

V,.: interaction operator acting on S and n-th P

e Measurement observable M € B(Hp), self-adjoint. Eigenvalues m,
spectral projections Emj.
e From principles of quantum mechanics:

P(Xlzml,...,Xn:mn)

— Ty (Emne—lTHn L Emle—lTHlpoelTHlEml L elTHnEmn)
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Theorem (Representation of joint probabilities). We have
P(Xl = my,.. -;Xn — mn) — <¢7Tm1 Tmn¢>7

where T,, is a “reduced dynamics operator” (no measurement: T'), the
inner product is that of Hs ® Hs and ¢ € Hs ® Hs represents the initial
state ps. (Gelfand-Naimark-Segal, or Liouville Hilbert space.)

P(X, = m eventually) = P(Up>1 Ni>n {Xr =m})

= lim lim P(X,=m,X,.1=m,..., X =m)

n—oo k—oo

= lim lim <¢,Tn_1(Tm)k_n¢>

n—oo k—oo

= (¥, 11 1Lny)

II, II,,,: Riesz spectral projections of I', T},, associated to eigenvalue one
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Proving correlation decay

e From above theorem
P(X;€ A, X,, € B) = (4, T 1T, "1 Tgep)

e Ergodicity assumption implies that, for u large,

TF = ) (7| 4+ O(e™")
for some v > 0 and where Ty = ¢, T*Y* = ¢*, (¢,9*) = 1. Therefore

P(X, € A, X,, € B) = (¢, T" " YT4p) (4", T1p) + O(e~7(m=1)

e First factor on right side is P(X; € A), second one is
(6, (W)W )Tt = (6, T T+ 0(e7™) = P(Xy € B)+0(e™™)

= P(X; € A, X,, € B)=P(X, € A)P(X,, € B) 4+ O(e~7(m=1)
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