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The Problem

Xn

P M

S

P : probe
S : scatterer
M : measurement (operator)

 {Xn}n≥1 measurement outcomes
Xn ∈ spec(M) = {m1, . . . ,mr}

Questions

• Asymptotics: P (Xn converges) =?, P (Xn ∈ A eventually) =?
• Input–output relationship?

• Asymptotic state of S? Convergence speed?
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Basic mechanism

• Interaction: τ (time), V (operator)

• Before scattering: probes are independent

• At scattering: probe n becomes correlated with S, which is correlated
with probes k, 1 ≤ k ≤ n−1⇒ Xn are dependent; quantum entanglement

Ergodicity assumption

In absence of measurement the interaction is effective: S is driven to an
asymptotic state (large times). This is observed in laboratory & is shown
by theory to hold generically.

Consequence

Scatterer ‘loses memory’: S initiates convergence to asymptotic state during
m− l ⇒ random variables Xl and Xm are weakly correlated if m− l >> 1.
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Results

Theorem (Correlation decay). There are constants c > 0, γ > 0 such
that, for all A ∈ σ(Xk, . . . , Xl), B ∈ σ(Xm, . . . , Xn), 1 ≤ k ≤ l < m ≤
n ≤ ∞, we have

|P (A ∩B)− P (A)P (B)| ≤ ce−γ(m−l)P (A).

• Decaying correlations⇒ Zero-One Law (Kolmogorov): Any event in tail
sigma-algebra

T =
⋂
k≥1

σ(Xk, Xk+1, . . .),

A ∈ T , satisfied P (A) = 0 or P (A) = 1.

• Example: A = {Xk converges} ∈ T , so P (Xk converges) is either zero
or one. WHICH ONE IS IT?
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P = 0 or P = 1: Perturbative approach

• V small (‖V ‖ << 1), m a fixed possible measurement outcome

• P (Xn = m) = Pin(m) +O(V )
• P (Xk = mk, Xl = ml) = P (Xk = mk)P (Xl = ml) +O(V )

P (Xn+1 = Xn) =
∑
m

P (Xn+1 = m,Xn = m)

=
∑
m

P (Xn+1 = m)P (Xn = m) +O(V )

=
∑
m

Pin(m)2 +O(V )

So
{0, 1} 3 P (Xn+1 = Xn eventually) ≤

∑
m

Pin(m)2 +O(V )

Conclusion: P (Xn converges) = 0 if the in-state is not localized with
respect to M (if M has nonvanishing variance) and V is small.
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Frequencies

• m: possible measurement outcome. Frequency of m:

fm = lim
n→∞

1
n

E
[
#k ∈ {1, . . . , n} : Xk = m

]
• What is the effect of the scattering process on frequencies? Define

Em(τ) =
1
τ

∫ τ

0

eisHEme−isHds,

the time-averaged eigenprojection associated to m ∈ spec(M).

Theorem (Frequencies). The first order correction (in V ) to the frequency
fm is the flux of the averaged eigenprojection associated to m,

fm = Pin(m) + τ
d
dt

∣∣∣
t=0

ωin ⊗ ωS
(

eitHEm(τ)e−itH
)

+O(V 2).

Note: the derivative term equals iτωin ⊗ ωS
(

[V,Em(τ)]
)

.
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Mean

Mean value

Xn =
1
n

n∑
j=1

Xj

Theorem (Law of large numbers). There is a µ∞ such that

lim
n→∞

P (Xn − µ∞) = 0

Approach is constructive and non-perturbative. We can answer more subtle
questions, e.g., questions of large deviation type:

P (|Xn − µ∞| > ε) ∼ e−nρ(ε) (n→∞),

with explicit ρ(ε).
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Mathematical setup

• Hilbert space of pure states H = HS ⊗HP ⊗HP ⊗ · · ·
• Initial state ρ0 = ρS ⊗ ρin ⊗ ρin ⊗ · · ·
ρ#: density matrices (trace-class, non-negative operators on H#)

• Dynamics at time-step n

Hn =
∞∑
k=1

HP,k +HS + Vn

Vn: interaction operator acting on S and n-th P
• Measurement observable M ∈ B(HP), self-adjoint. Eigenvalues mj,
spectral projections Emj

.

• From principles of quantum mechanics:

P (X1 = m1, . . . , Xn = mn)

= Tr
(
Emne−iτHn · · ·Em1e

−iτH1ρ0eiτH1Em1 · · · e
iτHnEmn

)
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Theorem (Representation of joint probabilities). We have

P (X1 = m1, . . . , Xn = mn) = 〈ψ, Tm1 · · ·Tmnψ〉,

where Tm is a “reduced dynamics operator” (no measurement: T ), the
inner product is that of HS ⊗HS and ψ ∈ HS ⊗HS represents the initial
state ρS. (Gelfand-Naimark-Segal, or Liouville Hilbert space.)

P (Xn = m eventually) = P (∪n≥1 ∩k≥n {Xk = m})
= lim

n→∞
lim
k→∞

P (Xn = m,Xn+1 = m, . . . ,Xk = m)

= lim
n→∞

lim
k→∞

〈ψ, Tn−1(Tm)k−nψ〉

= 〈ψ,Π Πmψ〉

Π, Πm: Riesz spectral projections of T , Tm associated to eigenvalue one
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Proving correlation decay

• From above theorem

P (Xl ∈ A,Xm ∈ B) = 〈ψ, T l−1TAT
m−l−1TBψ〉

• Ergodicity assumption implies that, for µ large,

Tµ = |ψ〉〈ψ∗|+O(e−γµ)

for some γ > 0 and where Tψ = ψ, T ∗ψ∗ = ψ∗, 〈ψ,ψ∗〉 = 1. Therefore

P (Xl ∈ A,Xm ∈ B) = 〈ψ, T l−1TAψ〉〈ψ∗, TBψ〉+O(e−γ(m−l))

• First factor on right side is P (Xl ∈ A), second one is

〈ψ, (|ψ〉〈ψ∗|)TBψ〉 = 〈ψ, Tm−1TBψ〉+O(e−γm) = P (Xm ∈ B)+O(e−γm)

⇒ P (Xl ∈ A,Xm ∈ B) = P (Xl ∈ A)P (Xm ∈ B) +O(e−γ(m−l))
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