Quantum Multi-time Measurements on Scattered Particles

Marco Merkli
Department of Mathematics
Memorial University
St. John's, Canada
In collaboration with
Mark Penney

ICM 2012, AI Ain, March 11

The Problem

Questions

- Asymptotics: $P\left(X_{n}\right.$ converges $)=?, P\left(X_{n} \in A\right.$ eventually $)=$?
- Input-output relationship?
- Asymptotic state of \mathcal{S} ? Convergence speed?

Basic mechanism

- Interaction: τ (time), V (operator)
- Before scattering: probes are independent
- At scattering: probe n becomes correlated with \mathcal{S}, which is correlated with probes $k, 1 \leq k \leq n-1 \Rightarrow X_{n}$ are dependent; quantum entanglement

Ergodicity assumption
In absence of measurement the interaction is effective: \mathcal{S} is driven to an asymptotic state (large times). This is observed in laboratory \& is shown by theory to hold generically.

Consequence

Scatterer 'loses memory': \mathcal{S} initiates convergence to asymptotic state during $m-l \Rightarrow$ random variables X_{l} and X_{m} are weakly correlated if $m-l \gg 1$.

Results

Theorem (Correlation decay). There are constants $c>0, \gamma>0$ such that, for all $A \in \sigma\left(X_{k}, \ldots, X_{l}\right), B \in \sigma\left(X_{m}, \ldots, X_{n}\right), 1 \leq k \leq l<m \leq$ $n \leq \infty$, we have

$$
|P(A \cap B)-P(A) P(B)| \leq c \mathrm{e}^{-\gamma(m-l)} P(A) .
$$

- Decaying correlations \Rightarrow Zero-One Law (Kolmogorov): Any event in tail sigma-algebra

$$
\mathcal{T}=\bigcap_{k \geq 1} \sigma\left(X_{k}, X_{k+1}, \ldots\right)
$$

$A \in \mathcal{T}$, satisfied $P(A)=0$ or $P(A)=1$.

- Example: $A=\left\{X_{k}\right.$ converges $\} \in \mathcal{T}$, so $P\left(X_{k}\right.$ converges $)$ is either zero or one. WHICH ONE IS IT?

$P=0$ or $P=1$: Perturbative approach

- V small $(\|V\| \ll 1)$, m a fixed possible measurement outcome
- $P\left(X_{n}=m\right)=P_{\text {in }}(m)+O(V)$
- $P\left(X_{k}=m_{k}, X_{l}=m_{l}\right)=P\left(X_{k}=m_{k}\right) P\left(X_{l}=m_{l}\right)+O(V)$

$$
\begin{aligned}
P\left(X_{n+1}=X_{n}\right) & =\sum_{m} P\left(X_{n+1}=m, X_{n}=m\right) \\
& =\sum_{m} P\left(X_{n+1}=m\right) P\left(X_{n}=m\right)+O(V) \\
& =\sum_{m} P_{\text {in }}(m)^{2}+O(V)
\end{aligned}
$$

So

$$
\{0,1\} \ni P\left(X_{n+1}=X_{n} \text { eventually }\right) \leq \sum_{m} P_{\text {in }}(m)^{2}+O(V)
$$

Conclusion: $P\left(X_{n}\right.$ converges $)=0$ if the in-state is not localized with respect to M (if M has nonvanishing variance) and V is small.

Frequencies

- m : possible measurement outcome. Frequency of m :

$$
f_{m}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbf{E}\left[\# k \in\{1, \ldots, n\}: X_{k}=m\right]
$$

- What is the effect of the scattering process on frequencies? Define

$$
\bar{E}_{m}(\tau)=\frac{1}{\tau} \int_{0}^{\tau} \mathrm{e}^{\mathrm{i} s H} E_{m} \mathrm{e}^{-\mathrm{i} s H} \mathrm{~d} s
$$

the time-averaged eigenprojection associated to $m \in \operatorname{spec}(M)$.
Theorem (Frequencies). The first order correction (in V) to the frequency f_{m} is the flux of the averaged eigenprojection associated to m,

$$
f_{m}=P_{\mathrm{in}}(m)+\left.\tau \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \omega_{\mathrm{in}} \otimes \omega_{\mathcal{S}}\left(\mathrm{e}^{\mathrm{i} t H} \bar{E}_{m}(\tau) \mathrm{e}^{-\mathrm{i} t H}\right)+O\left(V^{2}\right)
$$

Note: the derivative term equals $\mathrm{i} \tau \omega_{\mathrm{in}} \otimes \omega_{\mathcal{S}}\left(\left[V, \bar{E}_{m}(\tau)\right]\right)$.

Mean

Mean value

$$
\bar{X}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}
$$

Theorem (Law of large numbers). There is a μ_{∞} such that

$$
\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-\mu_{\infty}\right)=0
$$

Approach is constructive and non-perturbative. We can answer more subtle questions, e.g., questions of large deviation type:

$$
P\left(\left|\bar{X}_{n}-\mu_{\infty}\right|>\epsilon\right) \sim \mathrm{e}^{-n \rho(\epsilon)} \quad(n \rightarrow \infty)
$$

with explicit $\rho(\epsilon)$.

Mathematical setup

- Hilbert space of pure states $\mathcal{H}=\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \ldots$
- Initial state $\rho_{0}=\rho_{\mathcal{S}} \otimes \rho_{\text {in }} \otimes \rho_{\text {in }} \otimes \cdots$
$\rho_{\#}$: density matrices (trace-class, non-negative operators on $\mathcal{H}_{\#}$)
- Dynamics at time-step n

$$
H_{n}=\sum_{k=1}^{\infty} H_{\mathcal{P}, k}+H_{\mathcal{S}}+V_{n}
$$

V_{n} : interaction operator acting on \mathcal{S} and n-th \mathcal{P}

- Measurement observable $M \in \mathcal{B}\left(\mathcal{H}_{\mathcal{P}}\right)$, self-adjoint. Eigenvalues m_{j}, spectral projections $E_{m_{j}}$.
- From principles of quantum mechanics:

$$
\begin{aligned}
& P\left(X_{1}=m_{1}, \ldots, X_{n}=m_{n}\right) \\
& \quad=\operatorname{Tr}\left(E_{m_{n}} \mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots E_{m_{1}} \mathrm{e}^{-\mathrm{i} \tau H_{1}} \rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} E_{m_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}} E_{m_{n}}\right)
\end{aligned}
$$

Theorem (Representation of joint probabilities). We have

$$
P\left(X_{1}=m_{1}, \ldots, X_{n}=m_{n}\right)=\left\langle\psi, T_{m_{1}} \cdots T_{m_{n}} \psi\right\rangle
$$

where T_{m} is a "reduced dynamics operator" (no measurement: T), the inner product is that of $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{S}}$ and $\psi \in \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{S}}$ represents the initial state ρ_{S}. (Gelfand-Naimark-Segal, or Liouville Hilbert space.)
$P\left(X_{n}=m\right.$ eventually $)=P\left(\cup_{n \geq 1} \cap_{k \geq n}\left\{X_{k}=m\right\}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} P\left(X_{n}=m, X_{n+1}=m, \ldots, X_{k}=m\right) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left\langle\psi, T^{n-1}\left(T_{m}\right)^{k-n} \psi\right\rangle \\
& =\left\langle\psi, \Pi \Pi_{m} \psi\right\rangle
\end{aligned}
$$

Π, Π_{m} : Riesz spectral projections of T, T_{m} associated to eigenvalue one

Proving correlation decay

- From above theorem

$$
P\left(X_{l} \in A, X_{m} \in B\right)=\left\langle\psi, T^{l-1} T_{A} T^{m-l-1} T_{B} \psi\right\rangle
$$

- Ergodicity assumption implies that, for μ large,

$$
T^{\mu}=|\psi\rangle\left\langle\psi^{*}\right|+O\left(\mathrm{e}^{-\gamma \mu}\right)
$$

for some $\gamma>0$ and where $T \psi=\psi, T^{*} \psi^{*}=\psi^{*},\left\langle\psi, \psi^{*}\right\rangle=1$. Therefore

$$
P\left(X_{l} \in A, X_{m} \in B\right)=\left\langle\psi, T^{l-1} T_{A} \psi\right\rangle\left\langle\psi^{*}, T_{B} \psi\right\rangle+O\left(\mathrm{e}^{-\gamma(m-l)}\right)
$$

- First factor on right side is $P\left(X_{l} \in A\right)$, second one is

$$
\begin{gathered}
\left\langle\psi,\left(|\psi\rangle\left\langle\psi^{*}\right|\right) T_{B} \psi\right\rangle=\left\langle\psi, T^{m-1} T_{B} \psi\right\rangle+O\left(\mathrm{e}^{-\gamma m}\right)=P\left(X_{m} \in B\right)+O\left(\mathrm{e}^{-\gamma m}\right) \\
\Rightarrow P\left(X_{l} \in A, X_{m} \in B\right)=P\left(X_{l} \in A\right) P\left(X_{m} \in B\right)+O\left(\mathrm{e}^{-\gamma(m-l)}\right)
\end{gathered}
$$

