# Resonant Perturbation Theory of Decoherence, Relaxation and Evolution of Entanglement for Quantum Bits

Marco Merkli

Department of Mathematics, Memorial University, St. John's, Canada

Collaborators:

#### Gennady Berman

Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA

#### Fausto Borgonovi

Dipartimento di Matematica, Università Cattolica, Brescia, Italy

#### **Michael Sigal**

Department of Mathematics, University of Toronto, Toronto, Canada

2010 CSQ, San Diego, April 27, 2010

# Outline

• Open quantum systems:

Superconducting qubits in thermal environment

- New method: Resonance approach
- New results:
  - Expression for dynamics valid for all times
  - **Clustering** of matrix elements: classification of decoherence times
  - Application to non-integrable systems:
     decoherence-, entanglement survival/death/revival times
- Resolves some problems of master equation approach:
  - incorrect results for times  $t > (coupling)^{-2}$
  - incorrect final state due to  $\begin{cases} O(coupling^2) \text{ corrections} \\ \text{long-lived metastable states} \end{cases}$

# **Open Quantum Systems**

- Total system: "system S" + "reservoir R" + "interaction"
- S: **superconducting qubit**, atom, molecule, oscillator; *few degrees of freedom*
- R: collection of spins or **oscillators**; many degrees of freedom, in thermal equilibrium at temperature  $T \ge 0$
- $\bullet$  Total system: Hamiltonian  $H=H_{\rm S}+H_{\rm R}+H_{\rm I}$ , dynamics of total density matrix  $\rho_{\rm SR}$

$$\rho_{\rm SR}(t) = e^{-itH/\hbar} \rho_{\rm SR}(0) e^{itH/\hbar}$$

- Reduced density matrix:  $\rho(t) = \text{Tr}_{R} \ \rho_{SR}(t)$  partial trace over R
- Time-scales:

$$\begin{array}{ll} \tau_{\rm S} & \text{isolated S} & (\leftrightarrow \omega_{\rm S} = (E - E')/\hbar) \\ \tau_{\rm relax} & \text{relaxation time of S} & (\leftrightarrow H_{\rm I}) \\ \tau_{\rm R} = \frac{\hbar}{k_{\rm B}T} & \text{thermal reservoir correlation time} \end{array}$$

## **Quantum Optical Master Equation**

[Legget et al. '81, Palma et. al. '96, Gardiner-Zoller '04, Weiss '99]

• Finite system coupled to bosonic reservoir

$$H = H_{\rm S} + \sum_k \hbar \omega_k a_k^{\dagger} a_k + G \sum_k g_k (a_k^{\dagger} + a_k)$$

 $H_{\rm S}, G: N \times N$  matrices,  $g_k$ : coupling function; reduced evolution

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{\mathrm{i}}{\hbar} \int_0^t \mathrm{Tr}_{\mathrm{R}} \left[ H_{\mathrm{I}}(t), \left[ H_{\mathrm{I}}(s), \rho_{\mathrm{RS}}(s) \right] \right] \mathrm{d}s$$

• Born-Markov approximation: system relaxation much slower than decay of reservoir correlations (memory effects weak) + Rotating wave approximation: syst. relax. much slower than free system dynamics

#### $\Rightarrow$ Quantum Optical Regime: $\max\{\tau_R, \tau_S\} \ll \tau_{relax}$

 $\rightarrow$  Lindblad form of Master Equation:  $\rho(t) = e^{t\mathcal{L}}\rho(0)$ , markovian

### **Quantum Brownian Motion Master Equation**

**Damped harmonic oscillator** [Caldeira-Leggett '83, Haake-Reibold '84, Unruh-Zurek '89, Hu-Paz-Zhang '92]

$$H = \frac{p_0^2}{2m_0} + \frac{1}{2}m_0\omega_0^2 q_0^2 + \sum_{n=1}^N \left[\frac{p_n^2}{2m_n} + \frac{1}{2}m_n\omega_n^2 q_n^2\right] + q_0\sum_{n=1}^N g_n q_n$$

Quadratic hamiltonian  $\Rightarrow$  exact master equation (position representation):

$$i\hbar \frac{\partial}{\partial t}\rho(x, x', t) = F\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x'}, t\right)\rho(x, x', t)$$

F: complicated function encoding effects of reservoir

Quantum Brownian Motion Regime:  $au_{
m R} \ll au_{
m relax}$  and  $au_{
m R} \ll au_{
m S}$ 

 $\rightarrow$  Caldeira-Leggett master equation;  $\rho(x, x, t)$  follows classical BM

## **Spectral density**

• Effect of reservoir characterized by spectral density

$$J(\omega) = \sum_{n} \delta(\omega - \omega_n) \frac{g_n^2}{\omega_n}$$

• Limit of continuous modes of reservoir:

$$J(\omega) = \gamma \ \omega \left(\frac{\omega}{\Lambda}\right)^{n-1} \mathrm{e}^{-\omega^2/\Lambda^2}$$

 $\gamma > 0$ : measures overall size of coupling  $g_n$  $\Lambda$ : UV cutoff parameter (other forms of cutoff possible)

• n = 1 ohmic, n > 1 superohmic, n < 1 subohmic reservoir

# **Resonance Theory**

N-level system coupled to reservoir(s)

$$H = H_{\rm S} + \sum_k \hbar \omega_k a_k^{\dagger} a_k + \lambda G \sum_k g_k (a_k^{\dagger} + a_k)$$

 $\lambda$ : coupling constant; free dynamics ( $\lambda = 0$ )

$$[\rho_t]_{mn} = \mathrm{e}^{\mathrm{i}t(E_n - E_m)/\hbar} [\rho_0]_{mn}$$

#### Effects of coupling to reservoirs:

• Irreversibility, energies become complex:

$$E_n - E_m \Rightarrow E_n - E_m + \lambda^2 \delta_{E_n - E_m} + O(\lambda^4)$$

with  $\operatorname{Im} \delta_{E_n - E_m} \ge 0$  (decay!)

• Clustering,  $[\rho_t]_{mn}$  determined by  $[\rho_0]_{kl}$  with  $(k,l) \sim (m,n)$ :  $[\rho_t]_{mn} = F_t \Big( [\rho_0]_{kl} : E_k - E_l = E_m - E_n \Big) + O(\lambda^2)$ 

# Method

- "**Complex scaling**, complex spectral deformation" à la Balslev-Combes '71 (Schrödinger operators), Feshbach resonance method
- *H* replaced by "**non-hermitian Hamiltonian**" *K*: complex eigenvalues = resonance energies eigenvectors = metastable states
- Time-scales:

$$\tau_{\rm S} = \max_{E \neq E'} \frac{\hbar}{E - E'}, \quad \tau_{\rm R} = \frac{\hbar}{k_{\rm B}T}, \quad \tau_{\rm relax} \propto \lambda^{-2}$$

#### • Assumptions:

- infra-red:  $J(\omega) \sim \omega^n$  for  $\omega \to 0$ ,  $n = -1, 1, 3, 5, \ldots$
- ultra-violet:  $J(\omega) \sim e^{-\omega/\Lambda}, e^{-\omega^2/\Lambda^2}$  (or similar) for  $\omega \to \infty$
- $\lambda$  small: max{ $\tau_{\rm S}, \tau_{\rm R}$ }  $\ll \tau_{\rm relax}$
- $-\Lambda^3 \ll \lambda^{-2}$

## Result

For all times  $t \ge 0$ ,

$$[\rho_t]_{mn} = \sum_{(k,l)\in\mathcal{C}(E_m - E_n)} A_t(m,n;k,l) [\rho_0]_{kl} + O(\lambda^2)$$

 $O(\lambda^2)$  independent of t; different matrix element clusters

$$C(E_m - E_n) := \{(k, l) : E_k - E_l = E_m - E_n\}$$

evolve independently; each cluster markovian evolution; Chapman-Kolmogorov relation

$$A_{t+s}(m,n;k,l) = \sum_{(p,q)\in \mathcal{C}(E_m - E_n)} A_t(m,n;p,q) A_s(p,q;k,l)$$

• Markov transition amplitudes  $A_t$  given by resonance data:

$$A_t(m,n;k,l) = \sum_{s=1}^{\text{mult}(E_n - E_m)} e^{it\varepsilon_{E_n - E_m}^{(s)}} C_{k,l;m,n}(s)$$

 $C_{k,l;m,n}(s)$ : overlap coefficient between resonance- and energy states of S

#### References:

Merkli-Sigal-Berman, *Phys. Rev. Lett.* (2007), *Annals of Physics* (2008) Merkli-Berman-Sigal, *Annals of Physics* (2008) (decohernece) Merkli-Berman-Borgonovi-Gebresellasie, *submitted* 2010 (entanglement)

# **Comparison: Master Equation and Resonance Approach**

## Advantages of RA

## • Extended time-range

RA valid for  $t \ge 0$ , while ME resolves only times  $t < \lambda^{-2}$ :

- even for single qubit: ME predicts asymptotically Gibbs state  $\propto e^{-\beta H_S}$ , but true final state has corrections  $O(\lambda^2)$  to Gibbs state
- $H_{\rm S}$  degenerate levels  $\Rightarrow$  metastable states with lifetimes  $\propto \lambda^{-n}$ , n > 2; ME predicts wrong stationary states

## • Cluster Classification

- different time-scales: each cluster has own decay = decoherence time
- cluster containing diagonal relaxes to thermal values
- initially not populated clusters stay small  $O(\lambda^2)$  forever
- for given quantum algorithm only a few clusters may be important  $\Rightarrow$  only a few decoherence rates need analyzing
- Applicability and Rigor

RA applies to not exactly solvable systems, rigorous error control homogeneously in time, coincides with ME results where latter applicable

## Limitations of RA

- RA (and MA) does not generally resolve variations of quantities of  $O(\lambda^2)$
- RA assumes finite number N of degrees of freedom of S, due to condition  $\tau_{\rm S} \ll \tau_{\rm relax}$ , i.e.,  $\lambda^2 \ll \min(E E') \sim 2^{-N}$

• Exact models show: for short times  $t < \tau_{\beta}$ , true dynamics can deviate significantly from markovian approximation ("initial slip"): both ME and RA may produce density matrices having negative eigenvalues (however RA correct up to  $O(\lambda^2)$ )

#### Possible extensions of RA

• Non-markovian corrections: matrix element clusters start to interact, time-homogeneous error reduced to  $O(\lambda^4)$ , or smaller

- Overlapping resonances:  $\max(E E'), \lambda^2 \ll \min\{1, k_B T\}$
- Time-dependent Hamiltonians: e.g.  $H_{\rm S}(t)$ ,  $H_I(t)$  (slow variation and sudden jumps in two-level  $H_{\rm S}$ : [Merkli-Starr '09])

## **Resonance Theory: Decoherence**

N-qubit register *collectively* coupled to single bosonic reservoir ( $\hbar = 1$ )

$$H_{\rm S} = \sum_{j=1}^{N} B_j S_j^z + \sum_{i,j=1}^{N} J_{ij} S_i^z S_j^z, \quad H_{\rm R} = \sum_k \omega_k a_k^{\dagger} a_k$$

 $B_j$ : magnetic field at the location of spin j,  $J_{ij}$ : pair interaction constants

• Interaction: collective energy conserving and energy exchange

$$H_I = \lambda_1 \sum_{j=1}^N S_j^z \otimes \phi(g_1) + \lambda_2 \sum_{j=1}^N S_j^x \otimes \phi(g_2).$$

•  $\phi(g_{1,2}) = \sum_k g_{1,2}(k) [a_k^{\dagger} + a_k]$ 

- Energy basis:  $H_{\rm S}\varphi_{\underline{\sigma}} = E(\underline{\sigma})\varphi_{\underline{\sigma}}, \ E(\underline{\sigma}) = \sum_{j=1}^{N} B_j \sigma_j$
- Bohr energies:  $e(\underline{\sigma}, \underline{\tau}) = E(\underline{\sigma}) E(\underline{\tau})$
- Matrix element clusters:  $C(\underline{\sigma}, \underline{\tau}) = \{(\underline{\sigma}', \underline{\tau}') : e(\underline{\sigma}, \underline{\tau}) = e(\underline{\sigma}', \underline{\tau}')\}$

## **Resonance representation of dynamics**

$$[\rho_t]_{\underline{\sigma},\underline{\tau}} = \sum_{(\underline{\sigma}',\underline{\tau}')\in\mathcal{C}(\underline{\sigma},\underline{\tau})} \sum_{s=1}^{\operatorname{mult}(e(\underline{\sigma},\underline{\tau}))} \exp\{\mathrm{i}t\varepsilon_{e(\underline{\sigma}',\underline{\tau}')}^{(s)}\} C(\underline{\sigma},\underline{\tau};\underline{\sigma}',\underline{\tau}') \ [\bar{\rho}_0]_{\underline{\sigma}',\underline{\tau}'} + O(\lambda_1^2 + \lambda_2^2)$$



• Perturbation expansion: 
$$\varepsilon_e^{(s)} = e + \delta_e^{(s)} + O(\lambda_1^4 + \lambda_2^4)$$

## **Cluster decoherence rates**

$$\gamma_e = \min\left\{ \operatorname{Im} \varepsilon_e^{(s)} : s = 1, \dots, \operatorname{mult}(e) \text{ s.t. } \varepsilon_e^{(s)} \neq 0 \right\}$$

• Thermalization rate:  $\gamma_{\text{therm}} = \gamma_0$ 

• Assume generic magnetic fields: given any  $n_j \in \{0, \pm 1, \pm 2\}$ , the relation  $\sum_{j=1}^{N} B_j n_j = 0$  implies  $n_j = 0$  for all j (facilitates enumeration of register energies and eigenstates)

• Results

$$\gamma_e = \left\{ \begin{array}{ll} \lambda_2^2 y_0, & e = 0\\ \lambda_1^2 y_1(e) + \lambda_2^2 y_2(e) + y_{12}(e), & e \neq 0 \end{array} \right\} + O(\lambda_1^4 + \lambda_2^4)$$

 $y_1$ : due to energy conserving interaction;  $y_0$ ,  $y_2$ : due to energy exchange interaction;  $y_{12}$ : due to both interactions,  $O(\lambda_1^2 + \lambda_2^2)$ .

- $y_0 = 4\pi \min_{1 \le j \le N} \{ B_j^2 \mathcal{G}_2(2B_j) \coth(\beta B_j) \} \qquad (\mathcal{G}_2(x) \propto g_2(x))$
- $-y_1(e) = \frac{\pi}{2\beta} \gamma_+ e_0^2(e) \qquad (e_0(e) = \sum_{j=1}^N (\sigma_j \tau_j), \ \gamma_+ = \lim_{|k| \to 0} |k| g_1(k))$
- $y_2(e) = 2\pi \sum_{j:\sigma_j \neq \tau_j} B_j^2 \mathcal{G}_2(2B_j) \coth(\beta B_j)$

-  $y_{12}(e) \ge 0$ : more complicated expression; > 0 unless  $\lambda_1$  or  $\lambda_2$  or  $e_0(e)$  or  $\gamma_+$  vanish;  $y_{12}(e)$  approaches constant values as  $T \to 0, \infty$ 

• Full decoherence  $\gamma_e > 0$  for all  $e \neq 0$ : occurs for  $\lambda_2 \neq 0$  and  $g_2(2B_j) \neq 0$  for all j (provided  $\lambda_1, \lambda_2$  small enough)

### $\bullet$ Dependence on register size N

- Thermalization rate  $\gamma_0$  independent of N

- Assume distribution of magnetic field  $\langle \rangle$ ;

$$\langle y_1 \rangle = y_1 \propto e_0^2, \quad \langle y_2 \rangle \propto D(\underline{\sigma} - \underline{\tau}), \quad \langle y_{12} \rangle \propto N_0(e),$$

where  $N_0(e) = \{ \#j : \sigma_j = \tau_j \}$ ,  $D(\underline{\sigma} - \underline{\tau}) := \sum_{j=1}^N |\sigma_j - \tau_j|$  is **Hamming** distance ( $N_0$ , D depend on e only)

- Decoherence rates:

• Pure energy-conserving interaction:  $\gamma_e \propto \lambda_1^2 [\sum_{j=1}^N (\sigma_j - \tau_j)]^2$ , can be as large as  $O(\lambda_1^2 N^2)$ 

 $\circ$  Pure energy exchange interaction:  $\gamma_e \propto \lambda_2^2 D(\underline{\sigma} - \underline{\tau}) \leq O(\lambda_2^2 N)$ 

• Both interactions: additional term  $\langle y_{12} \rangle = O((\lambda_1^2 + \lambda_2^2)N)$ 

Fastest decay rate of reduced off-diagonal density matrix elements:

- due to the energy conserving interaction alone  $O(\lambda_1^2 N^2)$
- due to energy exchange interaction alone  $O(\lambda_2^2 N)$
- relaxation of diagonal matrix elements  $O(\lambda_1^2)$

#### Remarks:

- Local, energy-conserving interaction  $\Rightarrow$  fastest decoherence rate  $O(\lambda_1^2 N)$
- Assumption  $\tau_{\rm S} \ll \tau_{\rm relax} \Leftrightarrow \lambda_{1,2}^2 \ll \Delta_N := \min_{\underline{\sigma},\underline{\tau}}^* |E(\underline{\sigma}) E(\underline{\tau})|$
- Magnetic field roughly constant  $B_j \sim B \Rightarrow \Delta_N \sim B$  indep. of N

## **Resonance Theory: Evolution of Entanglement**

 $H = H_{S_1} + H_{S_2} + H_{R_1} + H_{R_2} + H_{R_0} + W$ 



$$\begin{array}{l} \lambda(S_1^x + S_2^x) \otimes \varphi_0(g) \\ +\kappa(S_1^z + S_2^z) \otimes \varphi_0(f) \end{array} \text{ collective} \\ +\mu(S_1^x \otimes \varphi_1(g) + S_2^x \otimes \varphi_2(g)) \\ +\nu(S_1^z \otimes \varphi_1(f) + S_2^z \otimes \varphi_2(f)) \end{array} \text{ local}$$

energy exchange terms  $\lambda, \mu$ , energy conserving terms  $\kappa, \nu$ 

$$H_{S_j} = B_j S_j^z$$
,  $B_j > 0$  magnetic fields,  $S_j^z$  Pauli matrix, energies  $\pm B_j$   
 $H_{R_j} = \sum_k \omega_k \ a_{j,k}^{\dagger} a_{j,k}$ ,  $R_j$  at temperature  $T = 1/\beta$   
 $\varphi_j(f) = \sum_k f_k a_{j,k}^{\dagger} + h.c.$ 

Marco Merkli

- Magnetic fields:  $0 < B_1 < B_2$  s.t.  $\frac{B_2}{B_1} \neq 2$  (avoids degeneracies)
- Transition energies:  $\{0, \pm 2B_1, \pm 2B_2, \pm 2(B_2 B_1), \pm 2(B_1 + B_2)\}$
- Matrix element clusters:  $C_1, \ldots, C_5$



$$\begin{split} \sigma_{f}(\omega) &= \coth(\beta\omega/2)J_{f}(\omega), \ J_{f}(\omega) = \sum_{k} f_{k}^{2}\delta(\omega - \omega_{k}) \text{ spectral density} \\ \text{Coupling functions } f = \text{energy exchange, } g = \text{energy conserving} \\ Y_{2} &= \frac{1}{2} \Big| \text{Im} \left[ 16\kappa_{1}^{2}\kappa_{2}^{2}r^{2} - (\lambda_{2}^{2} + \mu_{2}^{2})^{2}\sigma_{g}^{2}(2B_{2}) - 8\mathrm{i}\kappa_{1}\kappa_{2} \left(\lambda_{2}^{2} + \mu_{2}^{2}\right)rr_{2}' \right]^{1/2} \Big| \\ Y_{3} &= \frac{1}{2} \Big| \text{Im} \left[ 16\kappa_{1}^{2}\kappa_{2}^{2}r^{2} - (\lambda_{1}^{2} + \mu_{1}^{2})^{2}\sigma_{g}^{2}(2B_{1}) - 8\mathrm{i}\kappa_{1}\kappa_{2} \left(\lambda_{1}^{2} + \mu_{1}^{2}\right)rr_{1}' \right]^{1/2} \Big| \\ \text{where} \qquad r = \text{P.V.} \int_{\mathbf{R}^{3}} \frac{|f|^{2}}{|k|} \mathrm{d}^{3}k, \qquad r_{j}' = 4\pi B_{j}^{2} \int_{S^{2}} |g(2B_{j}, \Sigma)|^{2} \mathrm{d}\Sigma \end{split}$$

# **Cluster decoherence rates**

 $2B_1$ ,  $2B_2$ : qubit transition energies

$$\begin{split} \gamma_{\text{therm}} &= \min_{j=1,2} \left\{ (\lambda_j^2 + \mu_j^2) \sigma_g(2B_j) \right\} + O(\alpha^4) \\ \gamma_2 &= \frac{1}{2} (\lambda_1^2 + \mu_1^2) \sigma_g(2B_1) + \frac{1}{2} (\lambda_2^2 + \mu_2^2) \sigma_g(2B_2) \\ &- Y_2 + (\kappa_1^2 + \nu_1^2) \sigma_f(0) + O(\alpha^4) \\ \gamma_3 &= \frac{1}{2} (\lambda_1^2 + \mu_1^2) \sigma_g(2B_1) + \frac{1}{2} (\lambda_2^2 + \mu_2^2) \sigma_g(2B_2) \\ &- Y_3 + (\kappa_2^2 + \nu_2^2) \sigma_f(0) + O(\alpha^4) \\ \gamma_4 &= (\lambda_1^2 + \mu_1^2) \sigma_g(2B_1) + (\lambda_2^2 + \mu_2^2) \sigma_g(2B_2) \\ &+ \left[ (\kappa_1 - \kappa_2)^2 + \nu_1^2 + \nu_2^2 \right] \sigma_f(0) + O(\alpha^4) \\ \gamma_5 &= (\lambda_1^2 + \mu_1^2) \sigma_g(2B_1) + (\lambda_2^2 + \mu_2^2) \sigma_g(2B_2) \\ &+ \left[ (\kappa_1 + \kappa_2)^2 + \nu_1^2 + \nu_2^2 \right] \sigma_f(0) + O(\alpha^4) \end{split}$$

## **Discussion: decoherence rates**

- Thermalization rate depends on energy-exchange coupling only.
- Purely energy-exchange interactions:  $\kappa_j = \nu_j = 0 \Rightarrow$  rates depend symmetrically on local and collective influence through  $\lambda_j^2 + \mu_j^2$ .
- Purely energy-conserving interactions:  $\lambda_j = \mu_j = 0 \Rightarrow$  rates do not depend symmetrically on local and collective terms. E.g.  $\gamma_4$  may depend on local interaction only ( $\kappa_1 = \kappa_2$ ).
- $Y_1$  and  $Y_2$  contain products of exchange and conserving terms.

### **Entanglement evolution**

Entanglement of formation [Bennet et al '96] of two qubits
 ↔ concurrence [Wootters '97]:

$$C(\rho) = \max\{0, D(\rho)\}, \qquad D(\rho) = \sqrt{\nu_1} - \left[\sqrt{\nu_2} - \sqrt{\nu_3} - \sqrt{\nu_4}\right]$$

 $u_1 \ge \nu_2 \ge \nu_3 \ge \nu_4 \ge 0$  eigenvalues of matrix  $\xi := \rho(\sigma^y \otimes \sigma^y)\overline{\rho}(\sigma^y \otimes \sigma^y)$ • Dominant dynamics: only initially populated clusters have nontrivial

- dynamics
- Example: pure initial state  $\psi_0 = a |++\rangle + b |--\rangle$

$$\rho_{0} = \begin{bmatrix} p & 0 & 0 & u \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \overline{u} & 0 & 0 & 1-p \end{bmatrix} \Rightarrow \rho_{t} = \begin{bmatrix} x_{1}(t) & 0 & 0 & u(t) \\ 0 & x_{2}(t) & 0 & 0 \\ 0 & 0 & x_{3}(t) & 0 \\ \overline{u}(t) & 0 & 0 & x_{4}(t) \end{bmatrix} + O(\alpha^{2})$$

Marco Merkli

- Initial concurrence:  $C(\rho_0) = 2\sqrt{p(1-p)}$
- Dynamics

$$x_{1}(t) = pA_{t}(11;11) + (1-p)A_{t}(11;44)$$

$$x_{2}(t) = pA_{t}(22;11) + (1-p)A_{t}(22;44)$$

$$\vdots$$

$$u(t) = e^{it\varepsilon_{2}(B_{1}+B_{2})}u(0)$$

 $A_t(kk;ll) \leftarrow$  resonance energies bifurcating out of e = 0. Leading terms:

$$\delta_2 = (\lambda_1^2 + \mu_1^2)\sigma_g(B_1), \quad \delta_3 = (\lambda_2^2 + \mu_2^2)\sigma_g(B_2), \quad \delta_4 = \delta_2 + \delta_3$$

Leading term of  $\operatorname{Im} \varepsilon_{2(B_1+B_2)}$ :

$$\delta_5 = \delta_2 + \delta_3 + [(\kappa_1 + \kappa_2)^2 + \nu_1^2 + \nu_2^2]\sigma_f(0)$$

## **Entanglement death/survival times**

Take coupling s.t.  $\delta_2, \delta_3 > 0$  (thermalization). There is a positive constant  $\alpha_0$  (independent of p) s.t. if  $0 < \alpha \leq \alpha_0 \sqrt{p(1-p)}$ , then we have the following.

**Entanglement death time.** There is a constant  $C_A > 0$  (independent of p,  $\alpha$ ) such that concurrence  $C(\rho_t) = 0$  for all  $t \ge t_A$ , where

$$t_A := \max\left\{\frac{1}{\delta_5}\ln\left[C_A\frac{\sqrt{p(1-p)}}{\alpha^2}\right], \frac{1}{\delta_2 + \delta_3}\ln\left[C_A\frac{p(1-p)}{\alpha^2}\right]\right\}.$$

**Entanglement survival time.** There is a constant  $C_B > 0$  (independent of p,  $\alpha$ ) such that concurrence  $C(\rho_t) > 0$  for all  $t \leq t_B$ , where

$$t_B := \frac{1}{\max\{\delta_2, \delta_3\}} \ln\left[1 + C_B \alpha^2\right].$$

## **Discussion: entanglement evolution**

• Result gives disentanglement bounds for the true dynamics of the qubits for non-integrable interactions

• Disentanglement time is *finite* since  $\delta_2, \delta_3 > 0$  (which implies thermalization). If system does not thermalize then it may happen that entanglement stays nonzero for all times (it may decay or even stay constant)

• Rates  $\delta_j$  are of order  $\alpha^2$ . Both  $t_A$  and  $t_B$  increase with decreasing coupling strength

# **Entanglement creation**

Braun '02: energy conserving collective coupling, initial product state  $\frac{1}{\sqrt{2}}(|+\rangle - |-\rangle) \otimes \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle) \Rightarrow$  concurrence creation, death and revival

### **Dynamics in resonance approximation:**

• Purely energy-exchange coupling

 $[\rho_t]_{mn}$  depends on  $\lambda^2 + \mu^2$  only  $\Rightarrow$  Creation of entanglement under purely collective and purely local energy-exchange dynamics is the same

• Purely energy-conserving coupling

Evolution of the density matrix is not symmetric as function of  $\kappa$  (collective) and  $\nu$  (local). Absence of collective coupling ( $\kappa = 0$ ): concurrence evolution independent of local coupling; however for  $\kappa \neq 0$  concurrence *depends* on  $\nu$  (numerical results).

#### • Full coupling

Matrix elements evolve as complicated functions of all coupling parameters, showing that the effects of different interactions are correlated.

## Numerical results: concurrence creation



Amount of entanglement created is *independent* of coupling  $\kappa$ ; peak at  $t_0 \approx 0.5 \kappa^{-2}$ ; revival of entanglement  $t_1 \approx 2.1 \kappa^{-2}$ 



Switching on local (energy conserving) coupling:

- creation of entanglement reduced (and delayed,  $t_0 \propto (\kappa^2 + \nu^2)^{-1}$ )
- local coupling exceeds collective one  $\Rightarrow$  *no* concurrence is created



Energy-exchange collective and local interactions:  $\lambda = \mu$  (symmetric);  $\kappa = 0.02$  (collective, conserving),  $\nu = 0$  fixed

- entanglement creation is reduced and peak time  $t_0$  slightly reduced
- revival suppressed for increasing  $\lambda$
- small times: density matrix in resonance approx. has partly negative eigenvalues (as Caldeira-Legget, Unruh-Zurek); numerics not reliable (non-smooth behavior in  $\lambda$ )

# Conclusion

- New **resonance approach** to dynamics of open quantum systems:
  - Valid for all times  $t \ge 0 \Rightarrow$  correct large-time behaviour
  - Cluster-wise independent markovian evolution  $\Rightarrow$  different time scales  $\Rightarrow$  simplification of analysis of quantum algorithms
- New results:
  - **Decoherence**:
    - N qubits, collective energy conserving  $+ \ {\rm exchange} \ {\rm coupling}$

Decoherence rates: cons.  $\propto N^2$ , exch.  $\propto N$ , both: + interference term

– Entanglement:

Two qubits, collective + local, energy conserving + exchange coupling Concurrence survival/death times in terms of cluster deco. times Numerical analysis of concurrence creation, sudden death, revival