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Outline

• Open quantum systems:

Superconducting qubits in thermal environment

• New method: Resonance approach

• New results:

− Expression for dynamics valid for all times
− Clustering of matrix elements: classification of decoherence times
− Application to non-integrable systems:

decoherence-, entanglement survival/death/revival times

• Resolves some problems of master equation approach:

− incorrect results for times t > (coupling)−2

− incorrect final state due to

{
O(coupling2) corrections
long-lived metastable states
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Open Quantum Systems

• Total system: “system S” + “reservoir R” + “interaction”

• S: superconducting qubit, atom, molecule, oscillator; few degrees of
freedom
• R: collection of spins or oscillators; many degrees of freedom, in thermal
equilibrium at temperature T ≥ 0
• Total system: Hamiltonian H = HS+HR+HI, dynamics of total density
matrix ρSR

ρSR(t) = e−itH/h̄ρSR(0) eitH/h̄

• Reduced density matrix: ρ(t) = TrR ρSR(t) partial trace over R

• Time-scales:
τS isolated S (↔ ωS = (E − E′)/h̄)
τrelax relaxation time of S (↔ HI)
τR = h̄

kBT
thermal reservoir correlation time
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Quantum Optical Master Equation

[Legget et al. ‘81, Palma et. al. ‘96, Gardiner-Zoller ‘04, Weiss ‘99]

• Finite system coupled to bosonic reservoir

H = HS +
∑
k

h̄ωka
†
kak +G

∑
k

gk(a
†
k + ak)

HS, G: N ×N matrices, gk: coupling function; reduced evolution

d
dt
ρ(t) = − i

h̄

∫ t

0

TrR

[
HI(t), [HI(s), ρRS(s)]

]
ds

• Born-Markov approximation: system relaxation much slower than
decay of reservoir correlations (memory effects weak) + Rotating wave
approximation: syst. relax. much slower than free system dynamics

⇒ Quantum Optical Regime: max{τR, τS} << τrelax

→ Lindblad form of Master Equation: ρ(t) = etLρ(0), markovian
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Quantum Brownian Motion Master Equation

Damped harmonic oscillator [Caldeira-Leggett ‘83, Haake-Reibold ‘84,
Unruh-Zurek ‘89, Hu-Paz-Zhang ‘92]

H =
p2

0

2m0
+

1
2
m0ω

2
0q

2
0 +

N∑
n=1

[
p2
n

2mn
+

1
2
mnω

2
nq

2
n

]
+ q0

N∑
n=1

gnqn

Quadratic hamiltonian ⇒ exact master equation (position representation):

ih̄
∂

∂t
ρ(x, x′, t) = F

(
∂

∂x
,
∂

∂x′
, t

)
ρ(x, x′, t)

F : complicated function encoding effects of reservoir

Quantum Brownian Motion Regime: τR << τrelax and τR << τS

→ Caldeira-Leggett master equation; ρ(x, x, t) follows classical BM
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Spectral density

• Effect of reservoir characterized by spectral density

J(ω) =
∑
n

δ(ω − ωn)
g2
n

ωn

• Limit of continuous modes of reservoir:

J(ω) = γ ω
(ω

Λ

)n−1

e−ω
2/Λ2

γ > 0: measures overall size of coupling gn
Λ: UV cutoff parameter (other forms of cutoff possible)

• n = 1 ohmic, n > 1 superohmic, n < 1 subohmic reservoir
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Resonance Theory

N -level system coupled to reservoir(s)

H = HS +
∑
k

h̄ωka
†
kak + λG

∑
k

gk(a
†
k + ak)

λ: coupling constant; free dynamics (λ = 0)

[ρt]mn = eit(En−Em)/h̄[ρ0]mn

Effects of coupling to reservoirs:

• Irreversibility, energies become complex:

En − Em ⇒ En − Em + λ2δEn−Em +O(λ4)

with Im δEn−Em ≥ 0 (decay!)

• Clustering, [ρt]mn determined by [ρ0]kl with (k, l) ∼ (m,n):

[ρt]mn = Ft

(
[ρ0]kl : Ek − El = Em − En

)
+O(λ2)
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Method

• “Complex scaling, complex spectral deformation” à la Balslev-Combes
‘71 (Schrödinger operators), Feshbach resonance method

• H replaced by “non-hermitian Hamiltonian” K:

complex eigenvalues = resonance energies

eigenvectors = metastable states

• Time-scales:

τS = max
E 6=E′

h̄

E − E′
, τR =

h̄

kBT
, τrelax ∝ λ−2

• Assumptions:

− infra-red: J(ω) ∼ ωn for ω → 0, n = −1, 1, 3, 5, . . .
− ultra-violet: J(ω) ∼ e−ω/Λ, e−ω

2/Λ2
(or similar) for ω →∞

− λ small: max{τS, τR} << τrelax

− Λ3 << λ−2
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Result

For all times t ≥ 0,

[ρt]mn =
∑

(k,l)∈C(Em−En)

At(m,n; k, l)[ρ0]kl +O(λ2)

O(λ2) independent of t; different matrix element clusters

C(Em − En) := {(k, l) : Ek − El = Em − En}

evolve independently; each cluster markovian evolution; Chapman-
Kolmogorov relation

At+s(m,n; k, l) =
∑

(p,q)∈C(Em−En)

At(m,n; p, q)As(p, q; k, l)
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• Markov transition amplitudes At given by resonance data:

At(m,n; k, l) =
mult(En−Em)∑

s=1

eitε
(s)
En−Em Ck,l;m,n(s)

Ck,l;m,n(s): overlap coefficient between resonance- and energy states of S

References:

Merkli-Sigal-Berman, Phys. Rev. Lett. (2007), Annals of Physics (2008)

Merkli-Berman-Sigal, Annals of Physics (2008) (decohernece)

Merkli-Berman-Borgonovi-Gebresellasie, submitted 2010 (entanglement)
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Comparison: Master Equation and Resonance Approach

Advantages of RA

• Extended time-range

RA valid for t ≥ 0, while ME resolves only times t < λ−2:

– even for single qubit: ME predicts asymptotically Gibbs state ∝ e−βHS,

but true final state has corrections O(λ2) to Gibbs state

– HS degenerate levels ⇒ metastable states with lifetimes ∝ λ−n, n > 2;

ME predicts wrong stationary states

• Cluster Classification

– different time-scales: each cluster has own decay = decoherence time

– cluster containing diagonal relaxes to thermal values

– initially not populated clusters stay small O(λ2) forever

– for given quantum algorithm only a few clusters may be important

⇒ only a few decoherence rates need analyzing

• Applicability and Rigor

RA applies to not exactly solvable systems, rigorous error control
homogeneously in time, coincides with ME results where latter applicable
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Limitations of RA

• RA (and MA) does not generally resolve variations of quantities of O(λ2)
• RA assumes finite number N of degrees of freedom of S, due to condition
τS << τrelax, i.e., λ2 << min(E − E′) ∼ 2−N

• Exact models show: for short times t < τβ, true dynamics can deviate
significantly from markovian approximation (“initial slip”): both ME and
RA may produce density matrices having negative eigenvalues (however RA
correct up to O(λ2))

Possible extensions of RA

• Non-markovian corrections: matrix element clusters start to interact,
time-homogeneous error reduced to O(λ4), or smaller

• Overlapping resonances: max(E − E′), λ2 << min{1, kBT}
• Time-dependent Hamiltonians: e.g. HS(t), HI(t) (slow variation and
sudden jumps in two-level HS: [Merkli-Starr ‘09])
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Resonance Theory: Decoherence

N -qubit register collectively coupled to single bosonic reservoir (h̄ = 1)

HS =
N∑
j=1

BjS
z
j +

N∑
i,j=1

JijS
z
i S

z
j , HR =

∑
k

ωka
†
kak

Bj: magnetic field at the location of spin j, Jij: pair interaction constants

• Interaction: collective energy conserving and energy exchange

HI = λ1

N∑
j=1

Szj ⊗ φ(g1) + λ2

N∑
j=1

Sxj ⊗ φ(g2).

• φ(g1,2) =
∑
k g1,2(k)[a†k + ak]

• Energy basis: HSϕσ = E(σ)ϕσ, E(σ) =
∑N
j=1Bjσj

• Bohr energies: e(σ, τ) = E(σ)− E(τ)
• Matrix element clusters: C(σ, τ) = {(σ′, τ ′) : e(σ, τ) = e(σ′, τ ′)}
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Resonance representation of dynamics

[ρt]σ,τ =
∑

(σ′,τ ′)∈C(σ,τ)

mult(e(σ,τ))∑
s=1

exp{itε(s)
e(σ′,τ ′)} C(σ, τ ;σ′, τ ′) [ρ̄0]σ′,τ ′

+O(λ2
1 + λ2

2)

• Perturbation expansion: ε
(s)
e = e+ δ

(s)
e +O(λ4

1 + λ4
2)
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Cluster decoherence rates

γe = min
{

Imε(s)
e : s = 1, . . . ,mult(e) s.t. ε(s)

e 6= 0
}

• Thermalization rate: γtherm = γ0

• Assume generic magnetic fields: given any nj ∈ {0,±1,±2}, the relation∑N
j=1Bjnj = 0 implies nj = 0 for all j (facilitates enumeration of register

energies and eigenstates)

• Results

γe =
{
λ2

2y0, e = 0
λ2

1y1(e) + λ2
2y2(e) + y12(e), e 6= 0

}
+O(λ4

1 + λ4
2)

y1: due to energy conserving interaction; y0, y2: due to energy exchange
interaction; y12: due to both interactions, O(λ2

1 + λ2
2).

- y0 = 4πmin1≤j≤N{B2
jG2(2Bj) coth(βBj)} (G2(x) ∝ g2(x))

- y1(e) = π
2βγ+e

2
0(e) (e0(e) =

∑N
j=1(σj − τj), γ+ = lim|k|→0 |k|g1(k))

- y2(e) = 2π
∑
j:σj 6=τj B

2
jG2(2Bj) coth(βBj)
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- y12(e) ≥ 0: more complicated expression; > 0 unless λ1 or λ2 or e0(e) or
γ+ vanish; y12(e) approaches constant values as T → 0,∞

• Full decoherence γe > 0 for all e 6= 0: occurs for λ2 6= 0 and
g2(2Bj) 6= 0 for all j (provided λ1, λ2 small enough)

• Dependence on register size N

- Thermalization rate γ0 independent of N

- Assume distribution of magnetic field 〈 〉;

〈y1〉 = y1 ∝ e2
0, 〈y2〉 ∝ D(σ − τ), 〈y12〉 ∝ N0(e),

where N0(e) = {#j : σj = τj}, D(σ − τ) :=
∑N
j=1 |σj − τj| is Hamming

distance (N0, D depend on e only)

- Decoherence rates:

◦ Pure energy-conserving interaction: γe ∝ λ2
1[
∑N
j=1(σj − τj)]2, can be as

large as O(λ2
1N

2)
◦ Pure energy exchange interaction: γe ∝ λ2

2D(σ − τ) ≤ O(λ2
2N)
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◦ Both interactions: additional term 〈y12〉 = O((λ2
1 + λ2

2)N)

Fastest decay rate of reduced off-diagonal density matrix elements:

– due to the energy conserving interaction alone O(λ2
1N

2)
– due to energy exchange interaction alone O(λ2

2N)
– relaxation of diagonal matrix elements O(λ2

1)

Remarks:
• Local, energy-conserving interaction ⇒ fastest decoherence rate O(λ2

1N)
• Assumption τS << τrelax ⇔ λ2

1,2 << ∆N := min∗σ,τ |E(σ)− E(τ)|
• Magnetic field roughly constant Bj ∼ B ⇒ ∆N ∼ B indep. of N
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Resonance Theory: Evolution of Entanglement

H = HS1 +HS2 +HR1 +HR2 +HR0 +W

W =
λ(Sx1 + Sx2 )⊗ ϕ0(g)

+κ(Sz1 + Sz2)⊗ ϕ0(f)

}
collective

+µ
(
Sx1 ⊗ ϕ1(g) + Sx2 ⊗ ϕ2(g)

)
+ν
(
Sz1 ⊗ ϕ1(f) + Sz2 ⊗ ϕ2(f)

)} local

energy exchange terms λ, µ, energy conserving terms κ, ν

HSj = BjS
z
j , Bj > 0 magnetic fields, Szj Pauli matrix, energies ±Bj

HRj =
∑
k ωk a

†
j,kaj,k, Rj at temperature T = 1/β

ϕj(f) =
∑
k fka

†
j,k + h.c.
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• Magnetic fields: 0 < B1 < B2 s.t. B2
B1
6= 2 (avoids degeneracies)

• Transition energies: {0,±2B1,±2B2,±2(B2 −B1),±2(B1 +B2)}
• Matrix element clusters: C1, . . . , C5

∗ • • �
∗ � •
∗ •
∗

 (& hermitian)

σf(ω) = coth(βω/2)Jf(ω), Jf(ω) =
∑
k

f2
kδ(ω − ωk) spectral density

Coupling functions f = energy exchange, g = energy conserving

Y2 = 1
2

∣∣Im [
16κ2

1κ
2
2r

2 − (λ2
2 + µ2

2)2σ2
g(2B2)− 8iκ1κ2 (λ2

2 + µ2
2) rr′2

]1/2 ∣∣
Y3 = 1

2

∣∣Im [
16κ2

1κ
2
2r

2 − (λ2
1 + µ2

1)2σ2
g(2B1)− 8iκ1κ2 (λ2

1 + µ2
1) rr′1

]1/2 ∣∣
where r = P.V.

∫
R3

|f |2

|k|
d3k, r′j = 4πB2

j

∫
S2
|g(2Bj,Σ)|2dΣ
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Cluster decoherence rates

2B1, 2B2: qubit transition energies

γtherm = min
j=1,2

{
(λ2
j + µ2

j)σg(2Bj)
}

+O(α4)

γ2 = 1
2(λ2

1 + µ2
1)σg(2B1) + 1

2(λ2
2 + µ2

2)σg(2B2)

−Y2 + (κ2
1 + ν2

1)σf(0) +O(α4)

γ3 = 1
2(λ2

1 + µ2
1)σg(2B1) + 1

2(λ2
2 + µ2

2)σg(2B2)

−Y3 + (κ2
2 + ν2

2)σf(0) +O(α4)

γ4 = (λ2
1 + µ2

1)σg(2B1) + (λ2
2 + µ2

2)σg(2B2)

+
[
(κ1 − κ2)2 + ν2

1 + ν2
2

]
σf(0) +O(α4)

γ5 = (λ2
1 + µ2

1)σg(2B1) + (λ2
2 + µ2

2)σg(2B2)

+
[
(κ1 + κ2)2 + ν2

1 + ν2
2

]
σf(0) +O(α4)
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Discussion: decoherence rates

• Thermalization rate depends on energy-exchange coupling only.

• Purely energy-exchange interactions: κj = νj = 0 ⇒ rates depend
symmetrically on local and collective influence through λ2

j + µ2
j .

• Purely energy-conserving interactions: λj = µj = 0 ⇒ rates do not
depend symmetrically on local and collective terms. E.g. γ4 may depend
on local interaction only (κ1 = κ2).

• Y1 and Y2 contain products of exchange and conserving terms.
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Entanglement evolution

• Entanglement of formation [Bennet et al ‘96] of two qubits

↔ concurrence [Wootters ‘97]:

C(ρ) = max
{

0, D(ρ)
}
, D(ρ) =

√
ν1 −

[√
ν2 −

√
ν3 −

√
ν4

]
ν1 ≥ ν2 ≥ ν3 ≥ ν4 ≥ 0 eigenvalues of matrix ξ := ρ(σy ⊗ σy)ρ(σy ⊗ σy)
• Dominant dynamics: only initially populated clusters have nontrivial
dynamics

• Example: pure initial state ψ0 = a|+ +〉+ b| − −〉

ρ0 =


p 0 0 u
0 0 0 0
0 0 0 0
u 0 0 1− p

⇒ ρt =


x1(t) 0 0 u(t)

0 x2(t) 0 0
0 0 x3(t) 0
u(t) 0 0 x4(t)

+O(α2)
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• Initial concurrence: C(ρ0) = 2
√
p(1− p)

• Dynamics
x1(t) = pAt(11; 11) + (1− p)At(11; 44)

x2(t) = pAt(22; 11) + (1− p)At(22; 44)
...

u(t) = eitε2(B1+B2)u(0)

At(kk; ll) ← resonance energies bifurcating out of e = 0. Leading terms:

δ2 = (λ2
1 + µ2

1)σg(B1), δ3 = (λ2
2 + µ2

2)σg(B2), δ4 = δ2 + δ3

Leading term of Im ε2(B1+B2):

δ5 = δ2 + δ3 + [(κ1 + κ2)2 + ν2
1 + ν2

2 ]σf(0)
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Entanglement death/survival times

Take coupling s.t. δ2, δ3 > 0 (thermalization). There is a positive
constant α0 (independent of p) s.t. if 0 < α ≤ α0

√
p(1− p), then we

have the following.

Entanglement death time. There is a constant CA > 0 (independent
of p, α) such that concurrence C(ρt) = 0 for all t ≥ tA, where

tA := max

{
1
δ5

ln

[
CA

√
p(1− p)
α2

]
,

1
δ2 + δ3

ln
[
CA

p(1− p)
α2

]}
.

Entanglement survival time. There is a constant CB > 0 (independent
of p, α) such that concurrence C(ρt) > 0 for all t ≤ tB, where

tB :=
1

max{δ2, δ3}
ln
[
1 + CBα

2
]
.
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Discussion: entanglement evolution

• Result gives disentanglement bounds for the true dynamics of the qubits
for non-integrable interactions

• Disentanglement time is finite since δ2, δ3 > 0 (which implies
thermalization). If system does not thermalize then it may happen that
entanglement stays nonzero for all times (it may decay or even stay constant)

• Rates δj are of order α2. Both tA and tB increase with decreasing
coupling strength
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Entanglement creation

Braun ‘02: energy conserving collective coupling, initial product state
1√
2
(|+〉 − |−〉)⊗ 1√

2
(|+〉+ |−〉) ⇒ concurrence creation, death and revival

Dynamics in resonance approximation:

• Purely energy-exchange coupling
[ρt]mn depends on λ2 +µ2 only⇒ Creation of entanglement under purely
collective and purely local energy-exchange dynamics is the same

• Purely energy-conserving coupling
Evolution of the density matrix is not symmetric as function of κ (collective)
and ν (local). Absence of collective coupling (κ = 0): concurrence evolution
independent of local coupling; however for κ 6= 0 concurrence depends on
ν (numerical results).

• Full coupling
Matrix elements evolve as complicated functions of all coupling parameters,
showing that the effects of different interactions are correlated.
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Numerical results: concurrence creation

Amount of entanglement created is independent of coupling κ; peak at
t0 ≈ 0.5κ−2; revival of entanglement t1 ≈ 2.1κ−2
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Switching on local (energy conserving) coupling:

• creation of entanglement reduced (and delayed, t0 ∝ (κ2 + ν2)−1)

• local coupling exceeds collective one ⇒ no concurrence is created

Marco Merkli 28



Energy-exchange collective and local interactions: λ = µ (symmetric);
κ = 0.02 (collective, conserving), ν = 0 fixed

• entanglement creation is reduced and peak time t0 slightly reduced

• revival suppressed for increasing λ

• small times: density matrix in resonance approx. has partly negative
eigenvalues (as Caldeira-Legget, Unruh-Zurek); numerics not reliable (non-
smooth behavior in λ)
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Conclusion

• New resonance approach to dynamics of open quantum systems:

− Valid for all times t ≥ 0 ⇒ correct large-time behaviour
− Cluster-wise independent markovian evolution ⇒ different time scales
⇒ simplification of analysis of quantum algorithms

• New results:

− Decoherence:
N qubits, collective energy conserving + exchange coupling
Decoherence rates: cons. ∝ N2, exch. ∝ N , both: + interference term

− Entanglement:
Two qubits, collective + local, energy conserving + exchange coupling
Concurrence survival/death times in terms of cluster deco. times
Numerical analysis of concurrence creation, sudden death, revival
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