Dynamics of open quantum systems via resonances

Marco Merkli

Deptartment of Mathematics and Statistics Memorial University

CQIQC-V, August 14, 2013

Open quantum systems

• System + Environment models Hamiltonian

$$H = H_{
m S} + H_{
m R} + \lambda V$$

- $H_{\rm S} = {
m diag}(E_1, \dots, E_N)$ system Hamiltonian (finite-dimensional)

– Environment a 'heat bath' of non-interacting Bosons (Fermions) at thermal equilibrium ($T=1/\beta>0$) w.r.t. Hamiltonian

$$H_{\rm R} = \sum_k \omega_k a_k^{\dagger} a_k$$

 ω_k dispersion relation

– Interaction constant λ , interaction operator

$$V = G \otimes \sum_{k} \left(g_k a_k^{\dagger} + h.c. \right)$$

 $G = G^{\dagger}$ acts on the system, $g_k \in \mathbb{C}$ is a form factor.

• Schrödinger dynamics

$$\rho_{\rm tot}(t) = {\rm e}^{-{\rm i}tH} \rho_{\rm S} \otimes \rho_{\rm R} \, {\rm e}^{{\rm i}tH}$$

 $ho_{
m S}$ arbitrary system inital state, $ho_{
m R}$ thermal reservoir state

• Irreversible dynamical effects (in S or R) are visible in the limit of *continuous bath modes* (*e.g.* thermodynamic limit: ∞ volume)

Examples: convergence to a final state, decoherence, loss of entanglement, dissipation of energy into the bath

• The limits of: continuous modes, large time, small coupling,.... are *not* independent

• Our approach starts off with infinite-volume (true) reservoirs; first we perform continuous mode limit, then we consider $t \to \infty$, $\lambda \to 0,...$

The coupled infinite system

- Liouville representation (purification, GNS representation): view density matrix as a *vector* in 'larger space' (ancilla)
- \circ system state $\rho = \sum_j p_j |\psi_j\rangle \langle \psi_j| \rightarrow \Psi_{\rm S} = \sum_j \sqrt{p_j} \psi_j \otimes \psi_j$
- \circ $\infty\text{-volume}$ reservoir equilibrium state $~\rightarrow~\Psi_{\rm R}$
- \circ Initial system-reservoir state: $\Psi_0=\Psi_{\rm S}\otimes\Psi_{\rm R}$
- Dynamics generated by self-adjoint Liouville (super-)operator L

$$\Psi_t = \mathrm{e}^{-\mathrm{i}tL} \Psi_0,$$

with

$$L = L_0 + \lambda V, \qquad L_0 = L_{\rm S} + L_{\rm R}$$

Dynamics and spectrum of $L = L_0 + \lambda V$

• Guiding principle: spectral decomposition " $e^{-itL} = \sum_{j} e^{-ite_j} P_j$ "

- Stationary states \longleftrightarrow Null space (of L_0 , L)
 - Non-interacting dynamics: multiple stationary states $|\varphi_j\rangle\langle\varphi_j|\otimes\rho_{\rm R}$
 - Interacting dynamics: single stationary state
 Equilibrum of system + reservoir under coupled dynamics

Resonances

Unstable eigenvalues become *complex* 'energies' = resonances = eigenvalues of a *spectrally deformed Liouville operator*.

Spectral deformation:

Transformation $U(\theta)$, $\theta \in \mathbb{C} \to L(\theta) = U(\theta)LU(\theta)^{-1}$

Resonance representation of dynamics

• Spectral decomposition of $L(\theta)$

$$e^{itL(\theta)}$$
 "=" $\sum_{j} e^{it\varepsilon_j} P_j + O(e^{-\gamma t})$

• Dynamics of system-reservoir observables A

$$\langle A \rangle_t = \sum_j e^{it\varepsilon_j} C_j(A) + O(e^{-\gamma t})$$

- Remainder decays more quickly than main term $(\gamma > \text{Im}\varepsilon_j)$
- ε_i and C_i calculable by perturbation theory in λ
- For observables A of system alone, remainder is $O(\lambda^2 e^{-\gamma t})$
- Return to equilibrium. The coupled system approaches its joint equilibrium state: $\lim_{t\to\infty} \langle A \rangle_t = C_0(A)$.

Example: reduced dynamics of system

Two spins coupled to common and local reservoirs

Spin Hamiltonians $B_{1,2}\sigma_{1,2}^z$

Interact.: energy exchange/dephasing: $\sigma_{1,2}^{x}/\sigma_{1,2}^{z} \otimes \sum g_{k}(a_{k}^{\dagger}+a_{k})$

- Dynamics of two-spin reduced state ρ_t
 - Thermalization (convergence of diagonal of ρ_t): rate depends on exchange interaction only
 - Decoherence (decay of off-diagonals): rates depend on local & collective, exchange & dephasing interact. in a *correlated* way
 - *Entanglement*: estimates on entanglement preservation and entanglement death times for class of initial ρ_0

Isolated v.s. overlapping resonances

- Energy level spacing of system σ System-reservoir coupling constant λ
- { Isolated resonances regime: $\sigma \gg \lambda^2$ Overlapping resonances regime: $\sigma \ll \lambda^2$

Starting point: σ fixed, $\lambda = 0$

- Stationary system states: $\rho_{\rm S}$ diagonal in energy basis ($H_{\rm S}$)

Perturbation: $\lambda \neq 0$ small

- Unique stationary system state: equilibrium $\propto {
 m e}^{-eta {
 m H}_{
 m S}}$
- All decay times $\propto 1/\lambda^2$

Starting point: λ fixed, $\sigma = 0$

– Stationary system states: $\rho_{\rm S}$ diagonal in the interaction operator eigenbasis (G)

Perturbation: $\sigma \neq 0$ small

- Unique stationary system state: equilibrium $\propto {
 m e}^{-eta {
 m H}_{
 m S}}$
- Emergence of two time-scales
 - $\circ t_1 \propto 1/\lambda^2$: approach of quasi-stationary states
 - $\circ t_2 \propto \lambda^2/\sigma^2 \gg t_1$: quasi-stat. states decay into equilibrium

A donor-acceptor model

- $H_{\rm R} = \sum_k \omega(k) a_k^{\dagger} a_k$ and $\varphi(g) = \frac{1}{\sqrt{2}} \sum_k (g_k a_k^{\dagger} + h.c.)$, reservoir spatially infinitely extended and at thermal equilibrium.
- Donor-acceptor transition induced by environment.

Degenerate acceptor, $\sigma = 0$

- Stationary system states are convex span of equilibrium state $\rho_1 \propto e^{-\beta H_S} + O(\lambda^2)$ and of $\rho_2 \propto |0 \ 1 \ -1\rangle\langle 0 \ 1 \ -1|$.
- Asymptotic system state $(t
 ightarrow \infty)$ depends on initial state ho(0)

$$\rho(\infty) = \begin{pmatrix} p & 0 & 0\\ 0 & \frac{1}{2}(1-p) & \alpha(p)\\ 0 & \alpha(p) & \frac{1}{2}(1-p) \end{pmatrix} + O(\lambda^2),$$

where *p* depends on $\rho(0)$

• Final state is approached on time-scale $t_1 \propto 1/\lambda^2$,

$$\rho(t) - \rho(\infty) = O(\mathrm{e}^{-t/t_1}),$$

Lifted acceptor degeneracy, 0 < $\sigma \ll \lambda^2$

• The total system (donor-acceptor + environment) has single stationary state: the *coupled* equilibrium state. Reduced to donor-acceptor system, it is (modulo $O(\lambda^2)$)

$$\rho_{\beta} \propto \mathrm{e}^{-\beta H_{\mathrm{S}}}$$

• Final state is approached on time-scale $t_2 \propto \lambda^2/\sigma^2 ~(\gg t_1)$

$$ho(t) -
ho_eta = O(\mathrm{e}^{-t/t_2}),$$

• Manifold of stationary states for $\sigma = 0$ becomes quasi-stationary (decays on time-scale t_2)

• Arbitrary initial state $\rho(0)$ approaches quasi-stationary manifold, then decays to the unique equilibrium ρ_{β} .

• Evolution of donor-probability, $p_D(t) = [\rho(t)]_{11}$

• $p_D(0) \in [0,1]$, $p_D(t_1) = \frac{1}{2} \frac{1 + p_D(0)}{e^{\beta \Delta E} + 1}$, $p_D(t_2) = \frac{1}{e^{\beta \Delta E} + 2}$ (equil.)

Based on collaborations with

G. P. Berman (Los Alamos National Laboratory)

- F. Borgonovi (Brescia University)
- I. M. Sigal (University of Toronto)
- H. Song (Memorial University)