Quantum Measurements of Scattered Particles

Marco Merkli
Department of Mathematics and Statistics
Memorial University
St. John's
Canada

Joint work with Mark Penney, University of Oxford

AOQS, Autrans, July 12, 2013

Measurement of scattered probes

Incoming probe states: $\omega_{\text {in }}$ independent and identical Single probe-scatterer interaction: duration τ, operator V
Projective von Neumann measurement: operator $M, X_{n} \in \operatorname{spec}(M)$

- Both \mathcal{S} and \mathcal{P} are finite-dimensional quantum systems.
- The single probe - scatterer dynamics is generated by the Hamiltonian

$$
H=H_{\mathcal{S}}+H_{\mathcal{P}}+V
$$

- The incoming probe states are stationary.
- During scattering, a new probe becomes entangled with \mathcal{S}, which is entangled with all previous probes $\Rightarrow X_{n}$ are dependent random variables.
- Ergodicity assumption

Without measurements the scattering process drives \mathcal{S} to an asymptotic state (independent of the initial condition). The convergence is exponentially quick in time.
\Rightarrow The scatterer loses memory. Correlations between X_{k} and X_{m} decrease for growing time difference $|k-m|$, because \mathcal{S} initiates convergence to asymptotic state during time span $|k-m|$.

Decay of correlations

$\sigma\left(X_{k_{1}}, \ldots, X_{k_{N}}\right)$: Sigma-algebra generated by N random variables $X_{k_{1}}, \ldots, X_{k_{N}}$
Example: $\left\{X_{5}=m, X_{7} \in\left\{m^{\prime}, m^{\prime \prime}, m^{\prime \prime \prime}\right\}\right\} \in \sigma\left(X_{5}, X_{7}\right)$

Theorem (Correlation decay). There are constants $c>0, \gamma>0$ such that, for all $A \in \sigma\left(X_{k}, \ldots, X_{l}\right), B \in \sigma\left(X_{m}, \ldots, X_{n}\right), 1 \leq k \leq l<m \leq$ $n \leq \infty$, we have

- Decaying correlations \Rightarrow Kolmogorov Zero-One Law:

Any event A in the tail sigma-algebra ("tail event")

$$
\mathcal{T}=\bigcap_{k \geq 1} \sigma\left(X_{k}, X_{k+1}, \ldots\right)
$$

satisfies $P(A)=0$ or $P(A)=1$.

- Tail event $=$ does not depend on any finite collection of the X_{k}
- Examples:
- $\left\{X_{k} \in S\right.$ eventually $\}=\bigcup_{n \geq 1}\left\{X_{k} \in S \forall k \geq n\right\}$

$$
=\bigcup_{n \geq 1} \bigcap_{l \geq 1}\left\{X_{k} \in S, k=n, \ldots, n+l\right\} \in \mathcal{T}
$$

○ $P\left(X_{k} \in S\right.$ ev. $)=\lim _{n \rightarrow \infty} \lim _{l \rightarrow \infty} P\left(X_{k} \in S, k=n, \ldots, n+l\right) \in\{0,1\}$

- $P\left(X_{k}\right.$ converges $)=P\left(X_{k+1}=X_{k}\right.$ eventually $) \in\{0,1\}$

Weak interaction

- $\left\{\begin{array}{l}P\left(X_{n}=m\right)=p_{\text {in }}(m)+O(V), \text { where } p_{\text {in }}(m)=\omega_{\text {in }}\left(E_{M=m}\right) \\ P\left(X_{k}=m_{k}, X_{l}=m_{l}\right)=P\left(X_{k}=m_{k}\right) P\left(X_{l}=m_{l}\right)+O(V)\end{array}\right.$

$$
\Rightarrow P\left(X_{n+1}=X_{n}\right)=\sum_{m} p_{\text {in }}(m)^{2}+O(V)
$$

- $P\left(X_{n}\right.$ converges $) \leq \liminf _{n \rightarrow \infty} P\left(X_{n+1}=X_{n}\right)$

$$
=\sum_{m} p_{\mathrm{in}}(m)^{2}+O(V)
$$

- $\sum_{m} p_{\text {in }}(m)^{2} \leq 1$. Equality $\Leftrightarrow \omega_{\mathrm{in}}\left(E_{m}\right)=\delta_{m, m^{*}}$ for exactly one m^{*}

$$
\Rightarrow \quad \operatorname{Var}_{\text {in }}(M) \equiv \omega_{\text {in }}\left(M^{2}\right)-\omega_{\text {in }}(M)^{2}=0
$$

- Conclusion: If $\operatorname{Var}_{\text {in }}(M)>0$ and V is small, then $P\left(X_{n}\right.$ converges $)=0$.

Proposition. There is a constant C such that, for any $S \subset \operatorname{spec}(M)$ with $\omega_{\text {in }}\left(E_{S}\right) \neq 1$, if $\|V\| \leq C\left(1-\omega_{\text {in }}\left(E_{S}\right)\right)$, then

$$
P\left(X_{n} \in S \text { eventually }\right)=0
$$

Frequencies

- Frequency of possible measurement outcome m :

$$
f_{m} \equiv \lim _{n \rightarrow \infty} \frac{1}{n}\left\{\# k \in\{1, \ldots, n\}: X_{k}=m\right\}
$$

- ω_{+}: asymptotic state of the scatterer (no measurement dynamics)
- τ : probe - scatterer interaction time
- $H=H_{\mathcal{S}}+H_{\mathcal{P}}+V$: single probe-scatterer Hamiltonian
- E_{m} : spectral projection of M associated to the eigenvalue m

Theorem. The frequency f_{m} exists as an almost everywhere limit and takes the deterministic value

$$
f_{m}=\omega_{+} \otimes \omega_{\mathrm{in}}\left(\mathrm{e}^{\mathrm{i} \tau H} E_{m} \mathrm{e}^{-\mathrm{i} \tau H}\right)
$$

- More generally, for m fixed,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}\left\{\# j \leq n+m: X_{j} \in S_{1}, \ldots, X_{j+m} \in S_{m}\right\} \\
& \quad=\omega_{+} \otimes \omega_{\text {in }} \cdots \otimes \omega_{\text {in }}\left(\mathrm{e}^{\mathrm{i} \tau H_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{m}} E_{S_{1}} \cdots E_{S_{m}} \mathrm{e}^{-\mathrm{i} \tau H_{m}} \cdots \mathrm{e}^{-\mathrm{i} \tau H_{1}}\right)
\end{aligned}
$$

Statistical average

- Statistical average of $\left\{X_{n}\right\}$:

$$
\bar{X}_{n} \equiv \frac{1}{n} \sum_{j=1}^{n} X_{j}
$$

Theorem (Strong law of large numbers). As $n \rightarrow \infty$, the sequence \bar{X}_{n} converges almost everywhere to the deterministic value

$$
\mu \equiv \lim _{n \rightarrow \infty} \bar{X}_{n}=\omega_{+} \otimes \omega_{\text {in }}\left(\mathrm{e}^{\mathrm{i} \tau H} M \mathrm{e}^{-\mathrm{i} \tau H}\right) .
$$

Repeated interactions setup

At time step n, the first $n-1$ probes have scattered and the n-th one is interacting with the scatterer.

- Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}} \otimes \cdots \otimes \mathcal{H}_{\mathcal{P}}$
- Initial state: $\rho_{0}=\rho_{\mathcal{S}} \otimes \rho_{\mathrm{in}} \otimes \rho_{\mathrm{in}} \otimes \cdots \otimes \rho_{\mathrm{in}}$
- Define the Hamiltonian

$$
H_{j}=\sum_{k=1}^{n} H_{\mathcal{P}, k}+H_{\mathcal{S}}+V_{j}
$$

where V_{j} is a fixed interaction operator V acting on \mathcal{S} and the j-th \mathcal{P}

- Dynamics (no measurement)

$$
\rho_{n}=\mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots \mathrm{e}^{-\mathrm{i} \tau H_{1}} \rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}}
$$

- Measurement observable: self-adjoint M on $\mathcal{H}_{\mathcal{P}}$, eigenvalues m_{j}, spectral projections $E_{m_{j}}$
- Suppose M is measured on each probe exiting the scattering process, and that the measurement results are m_{1}, \ldots, m_{n}. Then the (full) state after the last measurement is

$$
\rho_{n}=\frac{E_{m_{n}} \mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots E_{m_{1}} \mathrm{e}^{-\mathrm{i} \tau H_{1}} \rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} E_{m_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}} E_{m_{n}}}{P\left(m_{1}, \ldots, m_{n}\right)}
$$

where

$$
\begin{aligned}
& P\left(m_{1}, \ldots, m_{n}\right) \\
& \quad=\operatorname{Tr}\left(E_{m_{n}} \mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots E_{m_{1}} \mathrm{e}^{-\mathrm{i} \tau H_{1}} \rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} E_{m_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}} E_{m_{n}}\right)
\end{aligned}
$$

is the probability of the measurement history m_{1}, \ldots, m_{n}.

- Stochastic process of measurement outcomes $\left\{X_{n}\right\}$:

$$
\Omega=(\operatorname{spec}(M))^{\mathbf{N}}=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{j} \in \operatorname{spec}(M)\right\}
$$

$\mathcal{F}: \quad \sigma$-algebra of subsets of Ω generated by cylinder sets

$$
\left\{\omega \in \Omega: \omega_{1} \in S_{1}, \ldots, \omega_{n} \in S_{n}, n \in \mathbf{N}, S_{j} \subseteq \operatorname{spec}(M)\right\}
$$

On (Ω, \mathcal{F}) define random variable $X_{n}: \Omega \rightarrow \operatorname{spec}(M)$, representing the measurement outcome on probe n, by

$$
X_{n}(\omega)=\omega_{n}, \quad n=1,2, \ldots
$$

- Finite-dimensional distribution of $\left\{X_{n}\right\}$:

$$
\begin{aligned}
& P\left(X_{1} \in S_{1}, \ldots, X_{n} \in S_{n}\right) \\
& \quad \equiv \operatorname{Tr}\left(E_{S_{n}} \mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots E_{S_{1}} \mathrm{e}^{-\mathrm{i} \tau H_{1}} \rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} E_{S_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}} E_{S_{n}}\right)
\end{aligned}
$$

extends to probability measure on (Ω, \mathcal{F}).

Representation of joint probabilities

Liouville space (GNS): density matrices are viewed as vectors in an ("enlarged") Hilbert space.

- ρ a density matrix on \mathcal{H}, dynamics $\mathrm{e}^{-\mathrm{i} t H} \rho \mathrm{e}^{\mathrm{i} t H}$

Represent ρ in $\mathcal{H} \otimes \mathcal{H}$ as

$$
\rho=\sum_{k} p_{k}\left|\chi_{k}\right\rangle\left\langle\chi_{k}\right| \quad \mapsto \quad \Psi=\sum_{k} \sqrt{p_{k}} \chi_{k} \otimes \chi_{k}
$$

- $\operatorname{Tr} \rho A=\langle\Psi,(A \otimes \mathbb{1}) \Psi\rangle_{\mathcal{H} \otimes \mathcal{H}}$, so observables are identified as $A \otimes \mathbb{1}$.
- Dynamics is implemented as

$$
\left(\mathrm{e}^{\mathrm{i} t H} A \mathrm{e}^{-\mathrm{i} t H}\right) \otimes \mathbb{1}=\mathrm{e}^{\mathrm{i} t\left(H \otimes \mathbb{1}+\mathbb{1} \otimes H^{\prime}\right)}(A \otimes \mathbb{1}) \mathrm{e}^{-\mathrm{i} t\left(H \otimes \mathbb{1}+\mathbb{1} \otimes H^{\prime}\right)}
$$

for an arbitrary self-adjoint H^{\prime}

- Dynamics generator: Liouville operator

$$
L=H \otimes \mathbb{1}+\mathbb{1} \otimes H^{\prime}
$$

- Schrödinger dynamics: $\Psi_{t}=\mathrm{e}^{-\mathrm{i} t L} \Psi$
- Reference state: trace state, $\Psi_{\text {ref }}=\frac{1}{\sqrt{\operatorname{dim\mathcal {H}}} \sum_{j} \chi_{j} \otimes \chi_{j} \text {, where } \chi_{j} \text { is } \text {, }{ }^{\text {e }} \text {, }}$ arbitrary ONB of \mathcal{H}
- $\mathcal{C}=$ complex conjugation in basis $\left\{\chi_{j}\right\}, X$ an arbitrary operator:

$$
\begin{array}{r}
(X \otimes \mathbb{1}) \Psi_{\mathrm{ref}}=\left(\mathbb{1} \otimes \mathcal{C} X^{*} \mathcal{C}\right) \Psi_{\mathrm{ref}} \\
\Longrightarrow K \equiv H \otimes \mathbb{1}-\mathbb{1} \otimes \mathcal{C} H \mathcal{C} \text { satisfies } K \Psi_{\mathrm{ref}}=0
\end{array}
$$

- Trace state "generates" any state: For an arbitrary $\Psi \in \mathcal{H} \otimes \mathcal{H}$, \exists ! operator B s.t.

$$
\Psi=(\mathbb{1} \otimes B) \Psi_{\mathrm{ref}}, \quad \text { we set } B^{\prime} \equiv \mathbb{1} \otimes B
$$

- Putting things together:

$$
\begin{aligned}
\operatorname{Tr}\left(\rho \mathrm{e}^{\mathrm{i} t H} A \mathrm{e}^{-\mathrm{i} t H}\right) & =\left\langle\Psi, \mathrm{e}^{\mathrm{i} t L}(A \otimes \mathbb{1}) \mathrm{e}^{-\mathrm{i} t L} \Psi\right\rangle \\
& =\left\langle\Psi_{\mathrm{ref}},\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} t L}(A \otimes \mathbb{1}) \mathrm{e}^{-\mathrm{i} t L} \Psi_{\mathrm{ref}}\right\rangle \\
& =\left\langle\Psi_{\text {ref }},\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} t K}(A \otimes \mathbb{1}) \Psi_{\text {ref }}\right\rangle
\end{aligned}
$$

- Apply this to the joint probability:
- Scalar product of $\left(\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{S}}\right) \otimes\left(\mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}}\right) \otimes \cdots \otimes\left(\mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}}\right)$
- Reference state is product of trace states, $\Psi_{\text {ref }}=\Psi_{\mathcal{S}} \otimes \Psi_{\mathcal{P}} \otimes \cdots \otimes \Psi_{\mathcal{P}}$

$$
\begin{aligned}
& P\left(X_{1} \in S_{1}, \ldots, X_{n} \in S_{n}\right) \\
& \equiv \operatorname{Tr}\left(\rho_{0} \mathrm{e}^{\mathrm{i} \tau H_{1}} E_{S_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}} E_{S_{n}} \mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots E_{S_{1}} \mathrm{e}^{-\mathrm{i} \tau H_{1}}\right) \\
& =\left\langle\Psi_{\text {ref }},\left(B_{\mathcal{S}}^{\prime}\right)^{*} B_{\mathcal{S}}^{\prime}\left[\left(B_{1}^{\prime}\right)^{*} B_{1}^{\prime} \mathrm{e}^{\mathrm{i} \tau K_{1}}\left(E_{S_{1}} \otimes \mathbb{1}_{\mathcal{P}}\right)\right] \cdots\right. \\
& \left.\quad \cdots\left[\left(B_{n}^{\prime}\right)^{*} B_{n}^{\prime} \mathrm{e}^{\mathrm{i} \tau K_{n}}\left(E_{S_{n}} \otimes \mathbb{1}_{\mathcal{P}}\right)\right] \Psi_{\text {ref }}\right\rangle
\end{aligned}
$$

- Each $\left(B_{j}^{\prime}\right)^{*} B_{j}^{\prime} \mathrm{e}^{\mathrm{i} \tau K_{j}} E_{S_{j}}$ acts as an operator $\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} \tau K} E_{S_{j}}$ on the scatterer and a single probe, $\left(\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{S}}\right) \otimes\left(\mathcal{H}_{\mathcal{P}} \otimes \mathcal{H}_{\mathcal{P}}\right)$
- Let $P=\left|\Psi_{\mathcal{P}}\right\rangle\left\langle\Psi_{\mathcal{P}}\right|$ and identify

$$
T_{S}=P\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} \tau K} E_{S} P
$$

as acting on $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{S}}$.

- Then we have the representation

$$
P\left(X_{1} \in S_{1}, \ldots, X_{n} \in S_{n}\right)=\left\langle\Psi_{\mathcal{S}},\left(B_{\mathcal{S}}^{\prime}\right)^{*} B_{\mathcal{S}}^{\prime} T_{S_{1}} \cdots T_{S_{n}} \Psi_{\mathcal{S}}\right\rangle
$$

- $\operatorname{spec}\left(T_{S}\right) \subset\{|z| \leq 1\}$
- No measurement: $T \equiv T_{\operatorname{spec}(M)}, T \Psi_{\mathcal{S}}=\Psi_{\mathcal{S}}$
- Ergodicity assumption: The only eigenvalue of T on the unit circle is 1 and it is simple. Riesz projection: $\left|\Psi_{\mathcal{S}}\right\rangle\left\langle\Psi_{\mathcal{S}}^{*}\right|$

Showing decay of correlations

- We show that $|P(A \cap B)-P(A) P(B)| \leq c \mathrm{e}^{-\gamma(m-l)}$ for events $A=\left\{\omega: X_{l} \in S_{l}\right\}, \quad B=\left\{\omega: X_{m} \in S_{m}\right\}$
- We have

$$
P(A \cap B)=\left\langle\Psi_{\mathcal{S}}, T^{l-1} T_{S_{l}} T^{m-l-1} T_{S_{m}} \Psi_{\mathcal{S}}\right\rangle
$$

- By the ergodicity assumption,

$$
\| T^{k}-\left|\Psi_{\mathcal{S}}\right\rangle\left\langle\Psi_{\mathcal{S}}^{*}\right| \| \leq C \mathrm{e}^{-\gamma k}
$$

and so

$$
P(A \cap B)=\underbrace{\left\langle\Psi_{\mathcal{S}}, T^{l-1} T_{S_{l}} \Psi_{\mathcal{S}}\right\rangle}_{P(A)}\left\langle\Psi_{\mathcal{S}}^{*}, T_{S_{m}} \Psi_{\mathcal{S}}\right\rangle+O\left(\mathrm{e}^{-\gamma(m-l)}\right)
$$

Next,

$$
\begin{aligned}
\left\langle\Psi_{\mathcal{S}}^{*}, T_{S_{m}} \Psi_{\mathcal{S}}\right\rangle & =\left\langle\Psi_{\mathcal{S}},\left(\left|\Psi_{\mathcal{S}}\right\rangle\left\langle\Psi_{\mathcal{S}}^{*}\right|\right) T_{S_{m}} \Psi_{\mathcal{S}}\right\rangle \\
& =\left\langle\Psi_{\mathcal{S}}, T^{m-1} T_{S_{m}} \Psi_{\mathcal{S}}\right\rangle+O\left(\mathrm{e}^{-\gamma m}\right) \\
& =P(B)+O\left(\mathrm{e}^{-\gamma m}\right)
\end{aligned}
$$

This shows that $|P(A \cap B)-P(A) P(B)| \leq c \mathrm{e}^{-\gamma(m-l)}$.

The frequencies

We first show convergence of the mean.

$$
\begin{aligned}
& \frac{1}{n} \mathbf{E}\left[\# k \in\{1, \ldots, n\} \text { such that } X_{k}=m\right] \\
& \quad=\frac{1}{n} \sum_{m_{1}, \ldots, m_{n}}\left(\sum_{j=1}^{n} \chi\left(m_{j}=m\right)\right) P\left(X_{1}=m_{1}, \ldots, X_{n}=m_{n}\right) \\
& \quad=\frac{1}{n} \sum_{j=1}^{n} P\left(X_{j}=m\right) \\
& \quad=\frac{1}{n} \sum_{j=1}^{n}\left\langle\Psi_{\mathcal{S}}, T^{j-1} T_{m} \Psi_{\mathcal{S}}\right\rangle \\
& \quad \longrightarrow\left\langle\Psi_{\mathcal{S}},\left(\left|\Psi_{\mathcal{S}}\right\rangle\left\langle\Psi_{\mathcal{S}}^{*}\right|\right) T_{m} \Psi_{\mathcal{S}}\right\rangle=\left\langle\Psi_{\mathcal{S}}^{*}, T_{m} \Psi_{\mathcal{S}}\right\rangle
\end{aligned}
$$

- Next, since $T_{m}=P\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} \tau K} E_{m} P$,

$$
\begin{aligned}
\left\langle\Psi_{\mathcal{S}}^{*}, T_{m} \Psi_{\mathcal{S}}\right\rangle & =\left\langle\Psi_{\mathcal{S}}^{*} \otimes \Psi_{\mathcal{P}},\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} \tau K} E_{m} \Psi_{\mathcal{S}} \otimes \Psi_{\mathcal{P}}\right\rangle \\
& =\left\langle\Psi_{\mathcal{S}}^{*} \otimes \Psi_{\mathcal{P}},\left(B^{\prime}\right)^{*} B^{\prime} \mathrm{e}^{\mathrm{i} \tau L} E_{m} \mathrm{e}^{-\mathrm{i} \tau L} \Psi_{\mathcal{S}} \otimes \Psi_{\mathcal{P}}\right\rangle \\
& =\left\langle\Psi_{\mathcal{S}}^{*} \otimes \Psi_{\mathrm{in}}, \mathrm{e}^{\mathrm{i} \tau L} E_{m} \mathrm{e}^{-\mathrm{i} \tau L} \Psi_{\mathcal{S}} \otimes \Psi_{\mathrm{in}}\right\rangle \\
& =\omega_{+} \otimes \omega_{\mathrm{in}}\left(\mathrm{e}^{\mathrm{i} \tau H} E_{m} \mathrm{e}^{-\mathrm{i} \tau H}\right)
\end{aligned}
$$

- Use a probabilistic 4th moment method to upgrade the convergence in expectation to almost sure convergence, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[\# k \in\{1, \ldots, n\}: X_{k}=m\right]=\omega_{+} \otimes \omega_{\mathrm{in}}\left(\mathrm{e}^{\mathrm{i} \tau H} E_{m} \mathrm{e}^{-\mathrm{i} \tau H}\right) \text { a.s. }
$$

Evolution of the scatterer

- ω_{n} : state of scatterer at time step n
- ω_{n} is random variable - determined by random measurement history

Lemma. The expectation $\mathbf{E}\left[\omega_{n}\right]$ is the state obtained by evolving the initial state according to the repeated interaction dynamics without measurement.

Proof. For a given measurement path m_{1}, \ldots, m_{n},

$$
\omega_{n}(A)=\frac{\left\langle\Psi_{\mathcal{S}}, T_{m_{1}} \cdots T_{m_{n}} A \Psi_{\mathcal{S}}\right\rangle}{\left\langle\Psi_{\mathcal{S}}, T_{m_{1}} \cdots T_{m_{n}} \Psi_{\mathcal{S}}\right\rangle}
$$

So

$$
\mathbf{E}\left[\omega_{n}(A)\right]=\sum_{m_{1}, \ldots, m_{n}}\left\langle\Psi_{\mathcal{S}}, T_{m_{1}} \cdots T_{m_{n}} A \Psi_{\mathcal{S}}\right\rangle=\left\langle\Psi_{\mathcal{S}}, T^{n} A \Psi_{\mathcal{S}}\right\rangle
$$

A spin-spin example

- Both \mathcal{S} and \mathcal{P} are spins,

$$
H_{\mathcal{S}}=H_{\mathcal{P}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Energy-exchange interaction

$$
V=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\text { h.c. } \quad \in \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{P}}
$$

- Take incoming probes to be in state up,

$$
\omega_{\mathrm{in}} \leftrightarrow \rho_{\mathrm{in}}=\left|\binom{1}{0}\right\rangle\left\langle\binom{ 1}{0}\right|
$$

- Final state ω_{+}of scatterer (under dynamics without measurement) is spin up.
- Here, $\omega_{+} \otimes \omega_{\text {in }}$ is invariant under probe-scatterer dynamics (Hamilt. H). \Rightarrow the frequencies and mean are those of incoming states,

$$
f_{m}=\omega_{\mathrm{in}}\left(E_{m}\right), \quad \mu=\omega_{\mathrm{in}}(M)
$$

So scatterer becomes 'transparent' after many interactions.

- Measurement of outcoming spin along the direction given by an angle $\theta \in[0, \pi / 2]$ in $x-z$ plane; $\theta=0$ is spin up direction
(Azimuthal angle plays no role, as Hamiltonian is invariant under rotation about z-axis)
- Measurement operator

$$
M=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

- Possible measurement outcomes: $m=1,-1$
- The operators T, T_{m} can be calculated explicitly. One shows

$$
P\left(X_{n}=1 \text { eventually }\right)= \begin{cases}1 & \text { if } \theta=0 \\ 0 & \text { if } \theta \neq 0\end{cases}
$$

- Frequencies: $f_{+1}=\cos ^{2}(\theta / 2), f_{-1}=\sin ^{2}(\theta / 2)$; average: $\mu=\cos \theta$.
- Large deviation analysis: e.g. logarithmic moment-generating function for $\bar{X}_{n}, \lim _{n \rightarrow \infty} n^{-1} \log \mathbf{E}\left[\mathrm{e}^{n \alpha \bar{X}_{n}}\right]$, can be analyzed via spectral properties of operators T_{S}. For example $\left(0<\epsilon<\epsilon^{\prime} \ll 1\right)$

$$
P\left(\epsilon \leq\left|\bar{X}_{n}-\cos \theta\right| \leq \epsilon^{\prime}\right) \sim \exp \left[-n\left\{\frac{\epsilon^{2}}{2 \sin ^{2} \theta}+O\left(\left(\epsilon^{\prime}\right)^{4}\right)\right\}\right], \quad n \rightarrow \infty
$$

Thanks to Alain, Claude-Alain \& Stephane

et

Merci de votre attention

