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Abstract. We present a rigorous analysis of the phenomenon of decoherence
for general N-level quantum systems coupled a reservoir modelled by a ther-
mal bosonic quantum environment. We present an explicit form of the dom-
inant reduced dynamics of open systems. We give explicit results for a spin
1/2 (qubit), including decoherence and thermalization times. Our approach
is based on a dynamical theory of quantum resonances. It yields the exact
reduced dynamics of the small system and does not involve master equation
or van Hove limit approximations. This approach is suitable for a wide variety
of systems which are not explicitly solvable, including systems of interacting
spins (registers of interacting qubits), for which the coupling between the
system and the environment is fixed but small.
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1. Introduction

We consider an open quantum system S+R, where S is a “system of interest” and
R is an “environment” or “reservoir”. Typically, S is a system under examination
in a laboratory, like an atom, a molecule or an aggregate of spins. It is not possible
in reality to isolate any physical system entirely from its surroundings R, and only
if we take these surroundings into account can we consider the total system as
being closed and evolving according to a hamiltonian dynamics. The reservoir R
is supposed to be a very large quantum system compared to S. An immediate
question is how the reservoir influences the dynamics of the small system. Prime
examples of effects S shows are thermalization and decoherence. The former means
that, due to its interaction with R, the system S is driven to the equilibrium state at
the temperature of R. The effect of decoherence is the subject of this contribution,
and we will describe it in detail in the next section.
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Typically, we may assume that we know the (relatively simple) microscopic
structure of S, while our knowledge of R is limited to its macroscopic characteriza-
tion. In other words, we shall assume the energy levels and corresponding states of
S to be given to us, as well as the thermodynamic parameters of R (temperature,
pressure, chemical potential...). We will always assume that the state space of S
is finite-dimensional. Of course, in a true concrete analysis, we will also have to
specify the reservoir R on a microscopic level. However, when studying the reduced
dynamics of S, only the macroscopic properties of R will be left in the description.
The details of the environment do not play any role. In order to avoid introducing
the microscopic structure of the environment, often an effective dynamics of the
small system S is introduced – however, any trustworthy effective dynamics has
to be derived from a full microscopic model, to which certain reduction and/or
approximation schemes are applied (e.g. Born- or Born-Markov approximations).
Our approach is to start off with a fully microscopic model of S + R, to eliminate
the degrees of freedom of R and to analyze the remaining reduced description of
S. In this process, we do not employ any approximation, however, our results are
perturbative in the strength of the coupling between S and R.

We will take reservoirs to be spatially infinitely extended quantum systems.
This is not merely a mathematical convenience, but rather a physical necessity that
is linked to the very phenomena we want to describe. Indeed, if we try to keep
the reservoir very large but finite, then irreversible physical processes will not
take place. One can understand this easily heuristically, since for finite systems,
hamiltonians have pure point spectrum, and so the dynamics will not drive the
system to a final state. On the other hand, we may want to consider reservoirs
which are just large, but maybe not infinitely extended, say an oven in a laboratory.
The temporal behaviour of such systems is approximated by that of systems with
infinitely extended reservoirs on time-scales which are large, but not too large, see
e.g. [5].

We focus in this paper on the phenomenon of decoherence. A definition of
decoherence is the vanishing of off-diagonal matrix elements of the reduced den-
sity matrix of S. A state given by a diagonal density matrix is characterized by
classical probabilities, in the sense that averages of observables are obtained by
weighing averages in specific states with given probabilities. The quantum nature
is contained in the off-diagonal reduced density matrix elements, which are respon-
sible for interference effects typical for quantum mechanics [15]. In this sense, a
decohering system undergoes a transition from quantum to classical behaviour.

2. Description of decoherence

The pure states of S + R are described by normalized vectors ψ in the Hilbert
space H = HS ⊗ HR. An observable A is a (self-adjoint) operator on H, its expec-
tation value in the state ψ is 〈A〉 = 〈ψ,Aψ〉. The dynamics is determined by the
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hamiltonian (energy operator)

H = HS +HR + λv,

where HS and HR are the hamiltonians of S and R, λ ∈ R is a coupling constant
and where v represents the interaction between S and R. The dynamical equation
is the Schrödinger equation,

i~∂tψ = Hψ.

We will set for convenience ~ = 1, so that the state vector evolves as ψt = e−itHψ0.
Not all states can be represented by a single vector ψ. Mixed states are determined
by density matrices ρ on H. These are non-negative (self-adjoint) trace-class op-
erators which are normalized as Trρ = 1. The average of an observable A in the
mixed state ρ is given by 〈A〉 = Tr(ρA). To any density matrix ρ, we can associate
normalized vectors ψn and probabilities pn, n = 1, 2, ..., s.t.

ρ =

∞∑

n=1

pn|ψn〉〈ψn|, (2.1)

where |ψn〉〈ψn| is the rank-one orthonormal projection onto Cψn (spectral decom-
position of ρ). Since the evolution of ψn is given by e−itHψn, it follows from (2.1)
that the density matrix ρ evolves according to ρt = e−itHρ0e

itH .
Consider the system S to be finite-dimensional, HS = CN . An example of a

mixed state of S is its equilibrium state at temperature T = 1/β, given by the
density matrix ρS,β ∝ e−βHS . It is readily seen that one cannot find any vector
ψ ∈ CN representing this state, i.e., having the property that 〈ψ,Aψ〉 equals
Tr(ρS,βA) for all A ∈ B(HS). However, by enlarging the Hilbert space, such a
vector can be found: view

√
ρS,β as an element of the Hilbert space of Hilbert-

Schmidt operators on HS (this space is naturally isomorphic to HS ⊗ HS). Then
clearly 〈A〉 = Tr(ρS,βA) =

〈√
ρS,β, A

√
ρS,β

〉
HS

, where 〈κ, σ〉HS = Tr(κ∗σ) is the

inner product of Hilbert-Schmidt operators.1

As mentioned in the introduction, the system R is infinitely extended in space.
Consequently, even if it has a finite energy density, the total energy HR is not well
defined (is infinite). In fact, it is not even clear which Hilbert space can describe
states of the infinitely extended system R. One constructs the system R via the
thermodynamic limit. First, one takes a state ρR,Λ of the reservoir constrained to
a box Λ ⊂ R3, with fixed thermodynamic properties (such as temperature, density
etc.). For each finite Λ, one knows the Hilbert space and the state. (For instance,
a quantum gas in a box Λ is described by the Hilbert space ⊕n≥0L

2(Λn, d3nx)
(Fock space), and since Λ is finite, the energy operator has discrete spectrum, so
the Gibbs-state density matrix is well defined.) Then the size of the box is made
larger and larger, Λ ↑ R3. This defines averages of (localized) observables A in the
infinitely extended state, E(A) = limΛ↑R3 Tr(ρR,ΛA). One can now try to find a
Hilbert space HR and a normalized vector ψR ∈ HR such that E(A) = 〈ψR, AψR〉.

1This is a manifestation of a general fact: a state over a C∗-algebra can be represented by a
vector state in a Hilbert space. This is the so-called Gelfand-Naimark-Segal representation [3].
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This is a difficult task in general, but explicit expressions for Hilbert spaces and
vectors have been found in the important cases of infinitely extended ideal quantum
gases in thermal equilibrium.2 We understand that this construction has been
carried out, and that the state of R is represented on the Hilbert space HR by a
vector (or a density matrix). We give a more detailed explanation of this procedure
at the end of this section. For now we carry on with a more qualitative discussion.

Given the density matrix of the total system, ρt, how can we extract the
dynamics of S? Define the reduced density matrix of S by

ρt := TrR(ρt),

where the trace is taken over HR only (partial trace). This is a density matrix on
HS, and it satisfies

TrS(ρtAS) = TrS+R

(
ρt(AS ⊗ 1lR)

)

for all obvservables AS ∈ B(HS). The reduced density matrix contains all infor-
mation to describe the evolution of expectation values of observables of S alone.
The degrees of freedom of R and the effects of the interaction between S and R
are encoded in ρt, which acts on the Hilbert space of the system S only.

Let {ϕj}N
j=1 be a fixed basis of HS and denote the matrix elements of ρt as

[ρt]m,n := 〈ϕm, ρtϕn〉. A definition of decoherence is the vanishing of off-diagonal
reduced density matrix elements in the limit of large times,

lim
t→∞

[ρt]m,n = 0, ∀m 6= n. (2.2)

This is a basis dependent notion of disappearance of correlations,

ρt =
∑

m,n

cm,n(t)|ϕm〉〈ϕn| −→
∑

m

pm(t)|ϕm〉〈ϕm|, (2.3)

as t → ∞. Most often, the basis considered is the energy basis, consisting of
eigenvectors of HS. A mixture of states ϕj of the form

∑
m,n cm,n|ϕm〉〈ϕn| is

called an incoherent mixture if all “off-diagonals” vanish, cm,n = 0 for m 6= n. Else
it is called a coherent mixture of the ϕj . The process (2.3) is thus a transition of
a coherent to an incoherent mixture. Hence the name decoherence.

2.1. An explicitly solvable model of decoherence

Consider S to be an N -level system, coupled to a reservoir R of thermal bosons at
temperature T = 1/β through an energy-conserving interaction (see [14] for the
qubit case, N = 2, and [11] for general N).

The Hilbert space and hamiltonian of S are given by HS = CN and HS =
diag(E1, . . . , EN ), respectively, and the interaction operator is v = G⊗ϕ(g), where
G = diag(γ1, . . . , γN ). Here,

ϕ(g) =
1√
2
[a∗(g) + a(g)], (2.4)

2For bosons, this is known as the Araki-Woods construction, for fermions it is the Araki-Wyss
construction, [1, 2, 13].
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where the a#(g) are the usual bosonic creation and annihilation operators, smeared
out with a form factor g ∈ L2(R3, d3k) (momentum space representation): a(g) =∫

R3 g(k)a(k)d
3k, a∗(g) =

∫
R3 g(k)a

∗(k)d3k, [a(k), a∗(l)] = δ(k − l).

Since [HS, H ] = [HS, HS + HR + v] = 0 the energy of the small system is
conserved. This model is exactly solvable. The solution is given by

[ρt]m,n = [ρ0]m,ne−it(Em−En)+iαm,n(t), (2.5)

where

αm,n(t) = (γ2
m − γ2

n)S(t) + i(γm − γn)2Γ(t) (2.6)

Γ(t) =

∫

R3

|g(k)|2 coth(β|k|/2)
sin2(|k|t/2)

|k|2 d3k (2.7)

S(t) =
1

2

∫

R3

|g(k)|2 |k|t− sin(|k|t)
|k|2 d3k. (2.8)

The parameter β in the above expression for Γ(t) is the inverse temperature of the
reservoir. We immediately see that

1. The populations are constant, [ρt]m,m = [ρ0]m,m for all m and all t.
2. If γm = γn for some m 6= n, then the corresponding off-diagonal matrix

element does not decay (decoherence-free subspaces).
3. Full decoherence (2.2) occurs if and only if Γ(t) → ∞ as t→ ∞. Whether this

happens or not depends on the infrared behaviour (small k) of the form factor,
as well as on the space dimension. Let the infrared behaviour be characterized
by g(k) ∼ |k|p as |k| ∼ 0. We obtain in three space-dimensions

lim
t→∞

αm,n(t)

t
=

1

2
(γ2

m − γ2
n)

〈
g, |k|−1g

〉
+ i(γm − γn)2






0 if p > 0
const. if p = −1/2
+∞ if p < −1/2

For p = −1/2 the off-diagonal matrix elements decay exponentially quickly,

|[ρt]m,n| ∼ e−const.t(γm−γn)2 and for p < −1/2 the decay is quicker. For p > 0
the function h(k) := |g(k)|2 coth(β|k|/2) |k|−2 is integrable on R3. We write
sin2(|k|t/2) = 1

2 (1 − cos(|k|t)) and obtain from (2.7)

Γ(t) =
1

2

∫

R3

|g(k)|2
|k|2 coth(β|k|/2)d3k − Re

(
F̂ (t)

)
,

where F̂ is the Fourier transform of the function

F (r) =
1

4
coth(β|r|/2)

∫

S2

|g(|r|, σ)|2dσ,
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defined for and integrable on r ∈ R (dσ is the uniform measure on the sphere

S2). From the Riemann-Lebesgue lemma we know that limt→∞ F̂ (t) = 0, so

lim
t→∞

Γ(t) =
1

2

∫

R3

|g(k)|2
|k|2 coth(β|k|/2)d3k 6= 0, for p > 0.

That is, for p > 0 we do not have full decoherence.

This is a non-demolition model (HS conserved), in which processes of absorption
and emission of quanta of the reservoir by the system S are suppressed. To enable
such processes one needs interactions v which do not commute with HS. In the
latter case, one typically expects that thermalization takes place. The phenomenon
of thermalization can be described as follows.

Let ρ(β, λ) be the equilibrium state of the total system at temperature
T = 1/β (where λ is the coupling constant measuring the strength of interaction
between S and R) and let ρt=0 be any initial density matrix (on H). Thermalization
means that

TrS+R(ρtA) −→ TrS+R(ρ(β, λ)A), as t→ ∞, (2.9)

where A is any observable of the total system S+R. The convergence (2.9) implies
that

ρt −→ ρ∞(β, λ) := TrR(ρ(β, λ)),

as t→ ∞. An expansion of ρ∞(β, λ) in the coupling constant λ gives

ρ∞(β, λ) = ρ∞(β, 0) +O(λ),

where ρ∞(β, 0) is the Gibbs state of the system S. The Gibbs state (density matrix)
is diagonal in the energy basis (diagonalizing HS), however, the correction term
O(λ) is not, in general (see e.g. [11] for explicit calculations for the qubit). This
shows the following effect.

Even if S is initially in an incoherent superposition of energy eigenstates it
will acquire some “residual coherence” of order O(λ) in the process of thermal-
ization. This leads us to defining decoherence in thermalizing systems as being the
decay of off-diagonals of ρt to their (non-zero) limit values, i.e., to the correspond-
ing off-diagonals of ρ∞(β, λ).

In examining the vast literature on this topic (some references are [7, 14, 15,
16]) we have only encountered either models with energy-conserving interactions
(which are explicitly solvable), or models with markovian approximations with
uncontrolled errors (master equations, Lindblad dynamics). The goal of our work
is to describe decoherence for systems which may also exhibit thermalization, in a
rigorous fashion (controlled perturbation expansion).
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2.2. Description of the infinitely extended reservoir R

Before taking the thermodynamic limit, as outlined above, the reservoir confined
to a box Λ is described by the bosonic Fock space

HR,Λ =
⊕

n≥0

L2
sym(Λn, d3nx), (2.10)

where the subindex “sym” means that we take symmetric square-integrable func-
tions only (indistinguishable Bose particles). The hamiltonian is that of non-

interacting particles, given by HR,Λ = ⊕n≥0H
(n)
R,Λ, with H

(n)
R,Λ =

∑n
j=1

√
−∂2

xj

(with periodic boundary conditions). The density matrix ρR,β,Λ = Z−1
R,β,Λe−βHR,Λ

is a well defined trace-class operator on the space (2.10), and the normalization
factor ZR,β,Λ is chosen so that Tr(ρR,β,Λ) = 1. One calculates [1, 13] Eβ(a#(f)) :=
limΛ↑R3 Tr

(
ρR,β,Λa

#(f)
)

= 0, where a# stands for either a or a∗, and

Eβ(a∗(f)a(g)) := lim
Λ↑R3

Tr
(
ρR,β,Λa

∗(f)a(g)
)

=

〈
g,

1

eβ|k| − 1
f

〉
, (2.11)

where the square-integrable f, g are represented in Fourier transform in the inner
product on the right hand side.3 All products of creation and annihilation operators
can be calculated using the Wick theorem [3], so (2.11) (plus the vanishing of
averages of a(f) and a∗(f)) determines the infinitely extended thermal state Eβ

of R completely. We consider here only reservoir equilibrium states below critical
density, i.e., in absence of Bose-Einstein condensate.

The Araki-Woods Hilbert space representation is given by

HR = F ⊗ F , (2.12)

where F = ⊕n≥0L
2
sym(R3n, d3nx),

ψR = Ω ⊗ Ω, (2.13)

the product of the Fock vacua in F , and

a∗β(g) = a∗
(

eβ|k|

eβ|k| − 1
g

)
⊗ 1l + 1l ⊗ a

(
1

eβ|k| − 1
g

)
,

where g is the complex conjugate of g, and where the a# are the ordinary Fock
creation and annihilation operators on F . We also set aβ(g) := [a∗β(g)]∗. It is easy
to check that

Eβ(a∗(f)a(g)) =
〈
ψR, a

∗
β(f)aβ(g)ψR

〉
.

This last equation shows us that we have successfully represented the thermal state
of the infinitely extended R as a vector state on a concrete Hilbert space.

3Of course, one has to restrict this to functions for which the r.h.s. is well defined.
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3. Dynamical resonance theory: Results

Let S be an N -level system, HS = CN , with energies {Ej}N
j=1, and let R be

the free massless Bose field, spatially infinitely extended in R3 in equilibrium at
temperature T = 1/β, as described at the end of Section 2.

The interaction operator is obtained by taking the thermodynamic limit of
λvΛ = λG ⊗ ϕ(gΛ). Here, G = G∗ ∈ B(HS) is a self-adjoint N × N matrix
and ϕ(gΛ) is the smoothed-out field operator (2.4) acting on HR,Λ, (2.10), and
gΛ(x) = χΛ(x)g(x) is the function g, cut off by being set equal to zero outside Λ.
It is customary to abbreviate this description by simply writing

v = λG ⊗ ϕ(g), (3.1)

and the thermodynamic limit is understood to be taken automatically.
We denote the average of observables A ∈ B(HS) at time t by

〈A〉t := TrS(ρtA), (3.2)

and the ergodic average is denoted by

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉tdt.

Our approach is based on a dynamical resonance theory, where resonances are
treated in a setting of spectral deformation (see Section 4). This leads to the
following regularity requirement which we assume to be fulfilled throughout this
paper.

(A) The function

gβ(u, σ) :=

√
u

1 − e−βu
|u|1/2

{
g(u, σ) if u ≥ 0
eiφg(−u, σ) if u < 0

is such that ϑ 7→ gβ(u + ϑ, σ) has an analytic continuation, as a map C →
L2(R × S2, du × dσ), into {|ϑ| < τ}, for some τ > 0. Here, φ is an arbitrary
fixed phase. (See [6] for the usefulness and physical interpretation of this
phase.)

Examples of admissible g are g(k) = g1(σ)|k|pe−|k|2 , where p = −1/2 + n, n =
0, 1, 2, . . ., and g1(σ) = eiφg1(σ). They include the physically most important cases,
see also [14]. We point out that it is possible to weaken condition (A) considerably,
at the expense of a mathematically more involved treatment, as mentioned in
[11, 12]. The following result is the main result of [11]. We give an outline of the
proof in Section 4.

Theorem 3.1 (Evolution of observables [11]). There is a λ0 > 0 s.t. the following
statements hold for |λ| < λ0, t ≥ 0, and A ∈ B(HS).

1. 〈〈A〉〉∞ exists.
2. We have

〈A〉t − 〈〈A〉〉∞ =
∑

ε6=0

eitεRε(A) +O(λ2e−τt), (3.3)
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where the ε are “resonance energies”, 0 ≤ Imε < τ/2, and Rε(A) are linear
functionals of A which depend on the initial state ρt=0.

3. Let e be an eigenvalue of the operator HS⊗1lS−1lS⊗HS (acting on HS⊗HS).
For λ = 0 each ε coincides with one of the e and we have the following
expansion for small λ

ε ≡ ε(s)e = e− λ2δ(s)e +O(λ4).

The δ
(s)
e satisfy Im δ

(s)
e ≤ 0. They are eigenvalues of so-called level shift

operators Λe, and s = 1, . . . , ν(s) ≤ mult (e) labels the eigenvalue splitting.
Furthermore, we have

Rε(A) =
∑

(m,n)∈Ie

κm,nAm,n +O(λ2), (3.4)

with Ie = {(m,n) | Em − En = e}, and where Am,n is the (m,n)-matrix
element of A and the numbers κm,n depend on the initial state.

Discussion. Relation (3.3) gives a detailed picture of the dynamics of averages of
observables. The resonance energies ε and the functionals Rε can be calculated
for concrete models, to arbitrary precision (in the sense of rigorous perturbation
theory in λ). See Section 3.1 for explicit expressions for the qubit. In the absence
of interaction (λ = 0) we have ε = e ∈ R. Depending on the interaction each
resonance energy ε may migrate into the upper complex plane, or it may stay on
the real axis, as λ 6= 0. The averages 〈A〉t approach their ergodic means 〈〈A〉〉∞
if and only if Imε > 0 for all ε 6= 0. In this case the convergence takes place on
the time scale [Imε]−1. Otherwise 〈A〉t oscillates. A sufficient condition for decay

is that Imδ
(s)
e < 0 (and λ small).

There are two kinds of processes which drive the decay: energy-exchange pro-
cesses and energy preserving ones. The former are induced by interactions enabling
processes of absorption and emission of field quanta with energies corresponding
to the Bohr frequencies of S (this is the “Fermi Golden Rule Condition”). Energy
preserving interactions suppress such processes, allowing only for a phase change
of the system during the evolution (“phase damping”).

Even if the initial density matrix, ρt=0, is a product of the system and reser-
voir density matrices, the density matrix ρt at any subsequent moment of time
t > 0 is not of product form. The evolution creates entanglement between the
system and reservoir. Our technique does not require ρt=0 to be a product state
[11].

Our next goal is to use Theorem 3.1 to describe in detail the decay of reduced
density matrix elements. According to Theorem 3.1 the dynamics is governed by

the resonance energies ε
(s)
e whose lowest order contributions δ

(s)
e are eigenvalues

of level shift operators Λe. In what follows we assume that all eigenvalues δ
(s)
e

are simple. We denote the corresponding eigenvector by η
(s)
e , and the eigenvector

associated to the adjoint operator Λ∗
e with eigenvalue δ

(s)
e is denoted by η̃

(s)
e . They
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are normalized as
〈
η
(s)
e , η̃

(s)
e

〉
= 1. The assumption of simplicity of the spectrum of

Λe is not necessary at all for our method, it is simply made to make the exposition
somewhat simpler. Let {ϕn} be an orthornomal basis of C

N diagonalizing the
Hamiltonian of S, HSϕn = Enϕn. The matrix element [ρt]m,n is obtained by
choosing the observable A = |ϕn〉〈ϕm| in (3.2). We denote the difference of two
eigenvalues of HS by Em,n = Em − En. A closer analysis of the functionals Rε

yields the following result, the proof of which we give in Section 5.

Theorem 3.2 (Dominant dynamics). There is a constant λ1 s.t. if 0 < |λ| < λ1,
then for all m,n and all t ≥ 0

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞ =
∑

{s:ε
(s)
En,m

6=0}

e
itε

(s)
En,m

∑

{k,l:El,k=En,m}
σ

(s)
m,n;k,l [ρ0]k,l +O(λ2e−tγm,n), (3.5)

where γm,n = min{Imε(s)e : ε
(s)
e 6= 0 and e 6= En,m}. The mixing constants σ

(s)
m,n;k,l

are given by

σ
(s)
m,n;k,l =

〈
η̃
(s)
En,m

, ϕn ⊗ ϕm

〉 〈
ϕl ⊗ ϕk, η

(s)
En,m

〉
,

η
(s)
En,m

and η̃
(s)
En,m

being the resonance eigenvectors introduced above.

Discussion. The group of matrix elements [ρt]m,n associated to the same energy
difference e = En−Em evolve in a coupled way, while groups belonging to different
e evolve indpendently, in the regime of Theorem 3.2. It is clear that the eigenvalue
e = 0 is always degenerate (ϕk ⊗ ϕk is always an associated eigenvector, for all

k). One easily sees that if e = En − Em is simple then σ
(s)
m,n;k,l vanishes unless

(k, l) = (m,n), in which case σ
(s)
m,n;k,l = 1 equals one (this follows simply from the

fact that ηe and η̃e belong to the spectral subspace associated to e). The main
term of the r.h.s. of (3.5) is then simply eitεEn,m , so

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞ = eitεEn,m [ρ0]m,n +O(λ2e−tγm,n).

The usefulness of Theorem 3.2 is that it relates [ρt]m,n to the initial conditions
[ρ0]k,l. We can understand how to arrive at Theorem 3.2 from Theorem 3.1 in the
following way. The expansion (3.4) implies that the main term of Rε(|ϕn〉〈ϕm|)
is non-vanishing only if ε bifurcates out of e = En − Em. This means that all
contributions to the sum in (3.3) with ε not bifurcating out of En − Em are of
order λ2, and decaying according to eitε. These terms, plus the O(λ2e−τt) term in
(3.3), constitute the remainder term in (3.5).

The constants γm,n are typically of order λ2 (they may be of higher order
if the so-called Fermi Golden Rule condition for efficient coupling is not satisfied
[9]). Expansion (3.5) is thus useful in the regime

λ2e−tλ2 min{Im δ(s)
e : e6=En,m} << e

−tλ2 max{Im δ
(s)
En,m

: s=1,...,ν(En,m)}
.
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In other words, given any finite maximal time of interest tmax, there is a λ1 s.t. if
0 < |λ| < λ1, expansion (3.5) is valid, and the remainder term is negligeable for
all 0 ≤ t ≤ tmax. The expansion (3.5) thus isolates the dominant dynamics.

3.1. Application: thermalization versus decoherence time for a qubit

A qubit, or spin 1/2, is described by the Hilbert-space of pure states C2. The
hamiltonian is HS = diag(E1, E2) (in the canonical basis of C2). We set ∆ =
E2 − E1 > 0. The coupling operator is given by the self-adjoint operator

v =

[
a c
c b

]
⊗ ϕ(g),

where ϕ(g) is given in (2.4). The operator HS ⊗ 1l − 1l ⊗HS has four eigenvalues,
e ∈ {−∆, 0, 0,∆}. One calculates the resonance energies associated to these e to
be (see also Theorem 3.1 and the next subsection)

ε
(1)
0 (λ) = 0

ε
(2)
0 (λ) = iλ2|c|2ξ(∆) +O(λ4)

ε∆(λ) = ∆ + λ2R+
i

2
λ2

[
|c|2ξ(∆) + (b − a)2ξ(0)

]
+O(λ4)

ε−∆(λ) = −ε∆(λ)

where we have set

ξ(η) := π

∫

R3

coth

(
β|k|
2

)
|g(k)|2δ(η − |k|)d3k

and (P.V. denoting the principal value)

R =
b2 − a2

2

〈
g, |k|−1g

〉
+

|c|2
2

P.V.

∫

R×S2

u2 coth

(
β|k|
2

) |g(|u|, σ)|2
u− ∆

du dσ. (3.6)

The corresponding resonance eigenvectors (defined before Theorem 3.2) are as
follows, where {ϕ1, ϕ2} is the canonical orthonormal basis of C2, and where ϕi,j =
ϕi ⊗ ϕj :

η
(1)
0 = ϕ1,1 + ϕ2,2, η̃

(1)
0 =

1

1 + e−β∆
[ϕ1,1 + e−β∆ϕ2,2],

η
(2)
0 = ϕ1,1 − eβ∆ϕ2,2, η̃

(2)
0 =

1

1 + eβ∆
[ϕ1,1 − ϕ2,2],
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and η∆ = η̃∆ = ϕ2,1, η−∆ = η̃∆ = ϕ1,2. Note that η
(1)
0 is just the (not normalized)

trace state on S. The mixing constants σ
(s)
m,n;k,l (see Theorem 3.2) are thus

σ
(1)
1,2;1,2 = σ

(1)
2,1;2,1 = 1,

σ
(2)
1,1;1,1 =

〈
η
(2)
0 , ϕ1,1

〉 〈
ϕ1,1, η

(2)
0

〉
=

1

1 + eβ∆
,

σ
(2)
1,1;2,2 = σ

(2)
2,2;1,1 =

〈
η
(2)
0 , ϕ1,1

〉 〈
ϕ2,2, η

(2)
0

〉
=

−1

1 + e−β∆
,

σ
(2)
2,2;2,2 =

〈
η
(2)
0 , ϕ2,2

〉 〈
ϕ2,2, η

(2)
0

〉
=

1

1 + e−β∆
.

We shall assume that the Fermi Golden Rule is satisfied: ξ(∆) 6= 0. Then zero is a

simple resonance eigenvalue, ε
(1)
0 = 0, and consequently, for e = 0 the term s = 1

is not present in the sum (3.5). Theorem 3.1 thus gives the following dominant
dynamics:

[ρt]1,1 − 〈〈|ϕ1〉〈ϕ1|〉〉∞ ∼ eitε
(2)
0 (λ)

{
[ρ0]1,1

1 + eβ∆
− [ρ0]2,2

1 + e−β∆

}
, (3.7)

[ρt]1,2 − 〈〈|ϕ2〉〈ϕ1|〉〉∞ ∼ eitε∆(λ)[ρ0]1,2. (3.8)

The dynamics for [ρt]2,2 and [ρt]2,1 are easily obtained also directly from Theorem
3.1, or by using that [ρt]1,1+[ρt]2,2 = 1 (since Tr ρt = 1) and the fact that ρt is self-
adjoint. We point out that since the system S+R approaches its (joint) equilibrium

as t → ∞, we have 〈〈|ϕ1〉〈ϕ1|〉〉∞ = eβ∆

1+eβ∆ + O(λ2) and 〈〈|ϕ2〉〈ϕ1|〉〉∞ = O(λ2)

(Gibbs distribution). This law can also be recovered by setting t = 0 in (3.7), (3.8)
and using that [ρ0]2,2 = 1 − [ρ0]1,1.

The thermalization time (decay of diagonals) is τth := [Imε
(2)
0 (λ)]−1, and the

decoherence time (decay of off-diagonals) is τdec := [Imε∆(λ)]−1. Their ratio is

τth
τdec

=
1

2

[
1 +

(b − a)2

|c|2
ξ(0)

ξ(∆)

]
+O(λ2).

Note that we have ξ(0) > 0 for infra-red behaviour g(k) ∼ |k|−1/2 as |k| ∼ 0 and
ξ(0) = 0 for more regular infra-red behaviour. Moreover, ξ(0) ∼ T and ξ(∆) ∼
const. > 0, as the temperature T ∼ 0.

Spin-Boson model. The Hamiltonian of S is given by [4, 8]

HS = −1

2
~∆0σx +

1

2
ǫσz ,

where the σ are Pauli matrices, ∆0 is the bare tunneling matrix element, and ǫ is
the bias. The coupling operator is

v = σz ⊗ ϕ(g).
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This determines the matrix elements a, b, c in the general formulation, and we
obtain

(b− a)2

|c|2 = 16
ǫ2

~2∆2
0

.

This shows for instance that the thermalization time will become smaller relative
to the decoherence time if the bias ǫ is decreased, or if the tunneling parameter
∆0 is increased.

Explicit form of the level shift operators. For the sake of completeness, we include
the explicit form of the level shift operators Λe, e = 0,±∆. By definition,

Λe = PeIP e(L0 − e+ i0)−1P eIPe,

where Pe is the spectral projection onto the eigenspace ofHS⊗1l−1l⊗HS associated
to the eigenvalue e, P e = 1l − Pe, L0 is the operator L0 restricted to RanP e, and
where I is the interaction operator, see [11] and Section 4. The explicit form of
Λe has been calculated in [11] for a general N -level system coupled to the thermal
bose environment (Proposition 5.1 of [11]). 4 The explicit form of Λ0, expressed in
the basis {ϕ1 ⊗ ϕ1, ϕ2 ⊗ ϕ2} of RanP0 is

Λ0 =
i

2

|c|2ξ(∆)

eβ∆ − 1

[
1 −1

−eβ∆ eβ∆

]
.

The dimension of RanP±∆ is one, so Λ±∆ reduces simply to a number,

Λ±∆ = R± i

2
[|c|2ξ(∆) + (b − a)2ξ(0)],

where R is given in (3.6). Knowing the explicit form of the level shift operators,
the expansions of the resonance energies and resonance eigenvectors are now easy
to obtain.

4. Outline of resonance approach

Consider any observable A ∈ B(HS). We have

〈A〉t = TrS [ρt A]

= TrS+R [ρt A⊗ 1lR]

=
〈
ψ0, e

itLλ [A⊗ 1lS ⊗ 1lR] e−itLλψ0

〉
. (4.1)

In the last step, we pass to the representation Hilbert space of the system (the
GNS Hilbert space), where the initial density matrix is represented by the vector
ψ0 (in particular, the Hilbert space of the small system becomes HS⊗HS), see also
after equation (2.1) and Section 2.2. For this outline we take the initial state to be
one represented by the product vector ψ0 = ψS,∞ ⊗ ψR, where ψS,∞ is the trace

4In the present work, we take the generator of dynamics to be the Liouville operator associated to
the reference state ψ0 = ψS,∞⊗ψR, see Section 4. In [11] the Liouville operator is taken with re-
spect to the reference vector ψS,β⊗ψR. Those two choices are related by a simple transformation,

and all physical results are independent of the particular choice of reference state.
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state of S, 〈ψS,∞, (AS ⊗ 1lS)ψS,∞〉 = 1
N Tr (AS), and where ψR is the equilibrium

state of R at a fixed inverse temperature 0 < β < ∞, (2.13). (This form of the
initial state is is not necessary for our method to work, see [11].) The dynamics
is implemented by the group of automorphisms eitLλ · e−itLλ . The self-adjoint
generator Lλ is called the Liouville operator. It is of the form Lλ = L0 + λW ,
where L0 = LS + LR represents the uncoupled Liouville operator, and λW is the
interaction (represented in the GNS Hilbert space).

We borrow a trick from the analysis of open systems far from equilibrium:
there is a (non-self-adjoint) generator Kλ s.t.

eitLλAe−itLλ = eitKλAe−itKλ for all observables A, t ≥ 0, and

Kλψ0 = 0.

There is a standard way of constructing Kλ given Lλ and the reference vector
ψ0. Kλ is of the form Kλ = L0 + λI, where the interaction term undergoes a
certain modification (W → I), c.f. [11]. As a consequence, formally, we may replace
the propagators in (4.1) by those involving K. The resulting propagator which is
directly applied to ψ0 will then just disappear due to the invariance of ψ0. One can
carry out this procedure in a rigorous manner, obtaining the following resolvent
representation [11]

〈A〉t = − 1

2πi

∫

R−i

〈
ψ0, (Kλ(ω) − z)−1 [A⊗ 1lS ⊗ 1lR]ψ0

〉
eitzdz, (4.2)

where Kλ(ω) = L0(ω) + λI(ω), I is representing the interaction, and ω 7→ Kλ(ω)
is a spectral deformation (translation) of Kλ. The latter is constructed as follows.
There is a deformation transformation U(ω) = e−iωD, where D is the (explicit)
self-adjoint generator of translations [11, 10] transforming the operator Kλ as

Kλ(ω) = U(ω)KλU(ω)−1 = L0 + ωN + λI(ω). (4.3)

Figure 1. Spectrum of K0(ω)
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Here, N = N1 ⊗ 1l + 1l ⊗N1 is the total number operator of HR, (2.12), and
where N1 is the usual number operator on F . N has spectrum N ∪ {0}, where 0
is a simple eigenvalue (vacuum eigenvector ψR). For real values of ω, U(ω) is a
group of unitaries. The spectrum of Kλ(ω) depends on Imω and moves according
to the value of Imω, whence the name “spectral deformation”. Even though U(ω)
becomes unbounded for complex ω, the r.h.s. of (4.3) is a well defined closed
operator on a dense domain, analytic in ω at zero. Analyticity is used in the
derivation of (4.2) and this is where the analyticity condition (A) before Theorem
3.1 comes into play. The operator I(ω) is infinitesimally small with respect to
the number operator N . Hence we use perturbation theory in λ to examine the
spectrum of Kλ(ω).

The point of the spectral deformation is that the (important part of the) spec-
trum of Kλ(ω) is much easier to analyze than that of Kλ, because the deformation
uncovers the resonances of Kλ. We have (see Figure 1)

spec
(
K0(ω)

)
= {Ei − Ej}i,j=1,...,N

⋃

n≥1

{ωn+ R},

because K0(ω) = L0 + ωN , L0 and N commute, and the eigenvectors of L0 =
LS + LR are ϕi ⊗ ϕj ⊗ ψR. The continuous spectrum is bounded away from the
isolated eigenvalues by a gap of size Imω. For values of the coupling parameter
λ small compared to Imω, we can follow the displacements of the eigenvalues by
using analytic perturbation theory. (Note that for Imω = 0, the eigenvalues are
imbedded into the continuous spectrum, and analytic perturbation theory is not
valid! The spectral deformation is indeed very useful!)

Figure 2. Spectrum of Kλ(ω). Resonances ε
(s)
e are uncovered.

Theorem 4.1. (See Fig. 2.) Fix Imω s.t. 0 < Imω < τ (where τ is as in Condition
(A) given after (3.2)). There is a constant c0 > 0 s.t. if |λ| ≤ c0/β then, for all ω
with Imω > ω′, the spectrum of Kλ(ω) in the complex half-plane {Im z < ω′/2} is
independent of ω and consists purely of the distinct eigenvalues

{ε(s)e : e ∈ spec(LS), s = 1, . . . , ν(e)},
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where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e. Moreover,

limλ→0 |ε(s)e (λ) − e| = 0 for all s, and we have Im ε
(s)
e ≥ 0. Also, the continuous

spectrum of Kλ(ω) lies in the region {Im z ≥ 3ω′/4}.
Next we separate the contributions to the path integral in (4.2) coming from

the singularities at the resonance energies and from the continuous spectrum. We
deform the path of integration z = R − i into the line z = R + iω′/2, thereby

picking up the residues of poles of the integrand at ε
(s)
e (all e, s). Let C(s)

e be a

small circle around ε
(s)
e , not enclosing or touching any other spectrum of Kλ(ω).

We introduce the generally non-orthogonal Riesz spectral projections

Q(s)
e = Q(s)

e (ω, λ) = − 1

2πi

∫

C(s)
e

(Kλ(ω) − z)−1dz. (4.4)

It follows from (4.2) that

Figure 3. Contour deformation:
∫

R−i dz =
∑

e,s

∫
C(s)

e
dz +

∫
R+iω′/2 dz

〈A〉t =
∑

e

ν(e)∑

s=1

eitε(s)
e

〈
ψ0, Q

(s)
e [A⊗ 1lS ⊗ 1lR]ψ0

〉
+O(λ2e−ω′t/2). (4.5)

Note that the imaginary parts of all resonance energies ε
(s)
e are smaller than ω′/2,

so that the remainder term in (4.5) is not only small in λ, but it also decays faster
than all of the terms in the sum! (See also Figure 3.)

Finally, we notice that all terms in (4.5) with ε
(s)
e 6= 0 will vanish in the

ergodic mean limit, so

〈〈A〉〉∞ = lim
T→∞

1

T

∫ T

0

〈A〉t dt =
∑

s:ε
(s)
0 =0

〈
ψ0, Q

(s)
0 [A⊗ 1lR ⊗ 1lR]ψ0

〉
.

The identification of the linear functionals

R
ε
(s)
e

(A) =
〈
ψ0, Q

(s)
e [A⊗ 1lS ⊗ 1lR]ψ0

〉
(4.6)
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(c.f. (3.3)) is useful for concrete calculations, as well as in the proof of Theorem
3.2. This concludes the outline of the proof of Theorem 3.1.

5. Proof of Theorem 3.2

The proof is based on expansion (3.3) together with formula (4.6). We have
[ρt]m,n = Tr (ρt|ϕn〉〈ϕm|), and it follows that

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞
=

∑

{e,s:ε
(s)
e 6=0}

eitε(s)
e

〈
ψ0, Q

(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉
+O(λ2e−ω′t/2). (5.1)

We leave out the trivial 1lR. Remembering that ψ0 = ψS,∞ ⊗ ψR, where ψS,∞ is

the trace state of S, represented by the vector 1√
N

∑N
j=1 ϕj ⊗ ϕj , we see that

[|ϕn〉〈ϕm| ⊗ 1lS]ψ0 =
1√
N
ϕn ⊗ ϕm ⊗ ψR. (5.2)

We shall treat in here the case where all resonance eigenvalues ε
(s)
e are simple (the

general case is dealt with in a similar fashion). Thus Q
(s)
e = |χ(s)

e 〉〈χ̃(s)
e | is a rank-

one projection, with Kλ(ω)χ
(s)
e = ε

(s)
e χ

(s)
e , Kλ(ω)∗χ̃(s)

e = ε
(s)
e χ̃

(s)
e and with the

normalization
〈
χ

(s)
e , χ̃

(s)
e

〉
= 1. We expand the resonance eigenvectors in powers

of λ,
χ(s)

e = η(s)
e ⊗ ψR +O(λ), χ̃(s)

e = η̃(s)
e ⊗ ψR +O(λ), (5.3)

where η
(s)
e , η̃

(s)
e are eigenvectors of the level shift operator Λe associated to the

eigenvalue δ
(s)
e and its complex conjugate, respectively (see also before Theorem

3.2 and [11]). Λe acts on the eigenspace P (LS = e), and η
(s)
e , η̃

(s)
e ∈ RanP (LS = e).

We obtain
Q(s)

e = |η(s)
e 〉〈η̃(s)

e | ⊗ |ψR〉〈ψR| +R1(λ),

where R1 satisfies 〈ψR|R1(λ)|ψR〉 = O(λ2). (This term is of order λ2 and not
only λ since the average of the interaction (3.1) vanishes in the vacuum state.)
Combining (5.2) and (5.3) and setting ϕm,n = ϕm ⊗ ϕn, we arrive at

〈
ψ0, Q

(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉

=
δe=En,m√

N

〈
ψ0, η

(s)
e ⊗ ψR

〉 〈
η̃(s)

e , ϕn,m

〉
+O(λ2)

=
δe=En,m√

N

∑

{l,k:El,k=e}
〈ψ0, ϕl,k ⊗ ψR〉

〈
ϕl,k, η

(s)
e

〉 〈
η̃(s)

e , ϕn,m

〉
+O(λ2).

(The δ is the Kronecker delta here.) The initial values are recovered from the first
scalar product on the r.h.s.,

1√
N

〈ψ0, ϕl,k ⊗ ψR〉 = 〈ψ0, [|ϕl〉〈ϕk| ⊗ 1lS]ψ0〉 = [ρ0]k,l.
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This shows that〈
ψ0, Q

(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉
= δe,En,m

∑

{l,k:El,k=En,m}
σm,n;k,l[ρ0]k,l +O(λ2), (5.4)

where the “mixing coefficients” σ
(s)
m,n;k,l are defined in Theorem 3.2. We use ex-

pression (5.4) in (5.1),

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞ (5.5)

=
∑

{e,s:ε
(s)
e 6=0}

eitε(s)
e



δe,En,m

∑

{l,k:El,k=En,m}
σ

(s)
m,n;k,l[ρ0]k,l +O(λ2)



 +O(λ2e−ω′t/2).

The main term in the sum selects e = En,m and only the summation over s :

ε
(s)
En,m

6= 0 remains. This yields the dominant part in the r.h.s. of formula (3.5).

The remainder is
∑

{e:e6=En,m, s:ε
(s)
e 6=0}

eitε(s)
e O(λ2) +O(λ2e−ω′t/2),

which is O(λ2e−tγm,n), as indicated in Theorem 3.2. This concludes the proof of
Theorem 3.2.
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