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Abstract

An N-level quantum system is coupled to a bosonic heat reservoir at positive
temperature. We analyze the system-reservoir dynamics in the following regime:
The strength A of the system-reservoir coupling is fixed and small, but larger than
the spacing o of system energy levels. For vanishing o there is a manifold of invariant
system-reservoir states and for o > 0 the only invariant state is the joint equilibrium.
The manifold is invariant for ¢ = 0 but becomes quasi-invariant for ¢ > 0. Namely,
on a first time-scale of the order 1/A?, initial states approach the manifold. Then
they converge to the joint equilibrium state on a much larger time-scale of the order
A2/a%. We give a detailed expansion of the system-reservoir evolution showing the
above scenario.

1 Introduction and main results

We consider an open quantum system consisting of a small, finite-dimensional part in-
teracting with a heat bath, modeled by a spatially infinitely extended free Bose gas in
thermal equilibrium. The analysis of such systems, and especially of their dynamics, has
a long tradition. The reduced dynamics of the small system alone is described in the
theoretical physics literature primarily using master equation techniques, which rely on
approximations that are not controlled mathematically, but are very popular and success-
ful nevertheless [8,18,21,30,33]. A rigorous approach is the van Hove, or weak coupling
limit [2,10, 11]. It describes the dynamics of the small system for times up to the order
of A™2, where ) is the strength of the system-environment coupling. Given a fixed A, the
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time-asymptotics, t — oo, cannot be resolved with the weak coupling method. It is shown
in [15] however that, for a class of open systems, if the conditions for the weak coupling
limit are satisfied, then the small subsystem converges to a final state in the long time
limit.

The analysis of the total system — the small system plus the reservoir — is more delicate
than that of the small subsystem alone. Over the last decade and a half, a perturbation
theory based on quantum resonance methods has been developed to deal with this problem,
see [5,14,17,19,20,23,25-27]. It is implemented in various forms, using spectral deformation,
positive commutator and renormalization group techniques and permits a mathematically
rigorous treatment of the full dynamics (system plus reservoir), for fized, small coupling
A and for all times ¢ > 0. Other than the spectral approach of the above references, the
polymer expansion method of [15] allows the analysis the total system as well, see [16].

The techniques of the above works are based on a perturbation theory in the system-
reservoir coupling parameter A\. The latter is assumed to be small relative to the spacing
o > 0 between the energy levels of the small system: |\ << o. This is the isolated
resonances regime. However, there are many physical systems for which this condition is
not valid. For instance in complex open systems, the small system itself is composed of many
individual parts (particles) and the energy level spacing may become very small. Take the
Hamiltonian of a system of N spins, having 2V eigenvalues. The total energy of the spins
is of the order of N. The generic energy spacing is thus of the order of ¢ ~ N/2V, which
is exponentially small in N. For such systems, the condition |\| << ¢ is not reasonable.

In the present work, we develop the resonance method in the overlapping resonances
regime o << |A|. We study here the simplest case, in which all the system energies lie close
together relative to |A|. Our results hold for a fixed, finite (but arbitrary) dimension N of
the small system and for small coupling constants, |A| < Ay, for some A\g > 0.

The N-level system coupled to a thermal reservoir is described by the Hamiltonian

H™(0,)\) = oHs + HY + \G @ *(g),

acting on the Hilbert space CV ® F(L?(A, d*z)), where the second factor is the Fock space
over the one-particle Hilbert space of wave functions localized in a finite box A C R?. The
system Hamiltonian Hg is an arbitrary self-adjoint operator on CV. The reservoir Hamil-
tonian Hy is the second quantization of the single Boson energy, the self-adjoint Laplace
operator with periodic boundary conditions. The system-reservoir interaction is the prod-

uct of a self-adjoint G acting on the system and the field operator ®*(g) = \%(a* (9)+a(g)),

where a*, a are the creation and annihilation operators on F(L?(A, d3z)), smoothed out with
the form factor g supported in A. The Hamiltonian contains the two parameters ¢ > 0 and
A € R, the system energy level splitting parameter and the interaction strength, respec-
tively. The bosonic field is initially in its thermal equilibrium state at positive temperature
1/, given by the density matrix pﬁﬁ x e AR, In order to have a true open system,
one performs the infinite-volume limit of the reservoir, in which the box A grows to all of
R3. More precisely, the expectation values of observables (Weyl operators) of the reservoir,



in the thermal state, have a limit as A — R3. This defines the infinite-volume equilib-
rium state wg g by its expectation values wg g(W(f)) on the Weyl operators. A Hilbert
space on which that state is represented by a vector can then be reconstructed using the
Gelfand-Naimark-Segal (GNS) construction [4]. This procedure leads to the description of
the coupled system as a W*-dynamical system [3,7]. It consists of a Hilbert space

H =Hs @ Hr, (1.1)
of a von Neumann algebra of observables
M = Mg @ Mg, (1.2)
and of a Heisenberg dynamics of 901,
Al (A) = N fe7 N A e (1.3)

The Liouvillian L(o, A) is a self-adjoint operator on H. The small system is an N-level
system having a Hamiltonian Hg. In the GNS (Gelfand-Naimark-Segal) representation, the
Hilbert space is Hg = CN®@C¥ and the algebra of observables is given by Mg = B(CY )@~
(bounded linear operators). The dynamics is implemented as

AS — eitLS (AS X ﬂ@N)eiitLS, AS < B(CN), (14)

where
LS — HS ® ﬂ@N - ]l(cN ® CHSC (15)

is the self-adjoint system Liouville operator. Here, C is the operator taking the complex
conjugate of components of vectors represented in the orthonormal eigenbasis {p,}Y | of
the interaction operator,

Goa = Gatpa, a=1,... N. (1.6)

The procedure of doubling of the Hilbert space is well known in the physics literature, also
called the ‘Liouville Representation’, see e.g. [29, Chapter 3].

The reservoir state is the thermodynamic (infinite volume) limit of a free Bose gas
in equilibrium at inverse temperature (5. Its Hilbert space representation has first been
constructed in [4] and a unitarily equivalent representation, suitable for the use of spectral
translation techniques, has been given in [19]. The GNS Hilbert space is Hg = F(L*(R x
5% du x d¥)) = BpoLZpmm (R x 52)", (du x d9)"), the symmetric Fock space over the
one-particle function space L*(R x S? du x dv). Here, dd is the uniform measure on S2.
The thermal field operator is given by

1

O(fs) = E(a*(fﬁ) +a(fs)), (1.7)

where a*(f3) =[5, s f3(u,9)a*(u,¥) dud? is the creation operator acting on the Fock
space Hr and a(fs) is its adjoint, smoothed out with f5 € L*(R x S?,du x d¥) defined by

9 if 0
folw, ) = %M‘uylﬂ{%%u,)é), s (1.8)
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Here, f € L*(R3,d3k) is represented in polar coordinates (and in Fourier space). The
thermal Weyl CCR algebra g C B(Hg) is the von Neumann algebra generated by the
unitary Weyl operators W ( fg) := ¢'®/8). The dynamics on 9y is given by the Bogoliubov
transformation ¢ — W (e fz) = =W (fg)e Ir. It is implemented by the self-adjoint
reservoir Liouvillian

Lg = dl'(u) := / u a*(u,?)a(u, ¥)dudd, (1.9)
Rx.S2
the second quantization of the operator of multiplication by u € R. The vacuum vector
Qg € Hg represents the S-KMS state w.r.t. the dynamics generated by (1.9).
The Liouville operator L(o, \) determining the full dynamics, (1.3), has the form

L(o,A) = Lo(o) + AV, (1.10)

with a free part
Lo(oc) =0Ls+ Lr (1.11)

(see (1.5), (1.9)) and where the system-reservoir interaction is
AV = AG @ Iy @ O(gp). (1.12)

Here, o and X are two real parameters, G is a self-adjoint matrix on CV and g5 € L*(R x S?)
is obtained from a form factor g € L*(R®) using the relation (1.8). It is well known that
L(o,)\) is self-adjoint for all A\,c € R (this can be proven by the Glimm-Jaffe-Nelson
commutator theorem, see e.g. [23, Theorem A.2]). We assume the following regularity of
the form factor.

Assumption Al. (Analyticity) There is a 6y > 0 such that 6 — gz(u + 6,7) has an
analytic extension to the domain {§ € C : |0] < 6y}, as amap from C to L?(Rx S?, duxdd).

Assumption A2. (Ultra-violet decay) There is an ¢ > 0 such that ¢*lg(k) €
L*(R3,d3k) for an a > (1/2 + €)/3, where 3 is the inverse temperature.

Examples of form factors satisfying this condition are g(r,9) = rPe="g,(9) (polar
coordinates in R?), where p = —1/2+n, n = 1,2,..., m = 1,2, and ¢g;(9) € R (see
also [17] for more general classes of admissible g). More generally, we charaterize the
infrared behaviour of the form factor by p > —% satisfying 0 < lim; 0 |‘|7,£T2| =(C < .
The value of p depends on the physical model considered. For quantum optical systems,
p = 1/2, for the quantized electromagnetic field, p = —1/2. We define the complex numbers

_ : 0 ifp>—1/2
_ _1(2_ .2 1 T )2
5a,b_ Q<ga gb)(.g"k‘ g>+12(ga gb) {§<0)>0 lfp:—]_/Q’ (113)
for a,b =1,..., N and where
" Blk| 2 € 3
= lim — th(—)|g(k)|" =———=d’k. 1.14
£(0) = lim L (—5)lg(k)] T e (1.14)
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The )\25&(, are the resonance energies for 0 = 0, see Theorem 2.3 below. The following
assumption simplifies the presentation of our results.

Assumption A3. (Non-degeneracy) The spectrum {g,}2_, of G is such that all non-
zero 0, are distinct.

Our analysis is readily generalized to the case of degenerate resonances (see the proof
of Theorem 2.5). Indeed, we do this for the spin-boson model, in which the two non-zero
resonances are given by 015 = 0 = i5£(0).

The following is a well-coupledness condition which we will assume for some results. It
implies that the coupled system has a unique stationary state (the coupled equilibrium).

Assumption A4. (Fermi Golden Rule Condition) For all a, b, a # b, we have Imd,;, > 0
and (@q, Hsp) # 0.

We show in Appendix A that the manifold of normal O(& y-invariant states on 9 is the
convex span of the states w, = ws, ® Wrq, a = 1,..., N. Here, wg, is given by the rank-
one density matrix |¢,)(p.| (spectral projection associated to (), and wg, is a normal
perturbation of the reservoir equilibrium state, explicitly given in (A.1). When o > 0
is small, then there is a unique (normal) ozf,,xinvariant state on 9, namely, the coupled
system-reservoir equilibrium state wg g x, which is an (a, 5, 5)-KMS state.

Our main result, summarized in Theorem 1.1 below, concerns the dynamics of initial
conditions and observables taken from sets Sy and M, respectively. Sy is a set of bounded
linear functionals on M (defined in (2.45)), dense in the set of all states of 9. All states
of the form wg ® wr g are in Sy, where wg is an arbitrary state on Mg and wg g is the
equilibrium state of the reservoir. 901, is the collection of translation analytic elements of
M, a dense set in M, see (2.45). All observables A = Ag ® 1y of the system alone are in

M. To express the details of the evolution, we introduce the following. Fora,b=1,..., N,
a # b, set
na,b(aa )\) = )\25(1,13 + U([HS]a,a - [HS]b,b)
o’ |[HS]aC|2 |[HS]bC|2
)\2( Z 5cb_5ab+ Z 5ac_5ab)’ ( )
c=1,...,N;c#ta 7 ’ c=1,...,N;c#b ™ ’

where [Hslp. = (s, Hs ) are the matrix elements of the system Hamiltonian. For a =
1,..., N, set

2
e
Naa(0,A) = 21358, (1.16)

where &, > 0 are the eigenvalues of the real symmetric N x N matrix 7" with matrix
elements

Imd, _
- |(5 b|;|[HS]a,b|2, lfa#b
Flaw = (1.17)
Imd, . y
Z ‘5 ’2 |[HS]a,c| ) if a = 0.
c=1,...,N;c#a a,c



The vector \/Lﬁ(l, ..., 1) is in the null space of T. We enumerate the eigenvalues of T s.t.

& = 0. Under Assumption A4, zero is a simple eigenvalue of T' (see after (2.44) for a
proof). We show in Theorem 2.5 that, for ¢ << |)|, the resonances are given by

cap(0,N) = Nap(0,A) + O (6N 71) + Oa(c?) (1.18)

2
(0, )) = 2i%£a+0(02|/\|_1) NONCa) (1.19)
Here, Oy (0?) is a term f(\, o) satisfying limsup,_,, 0 73| f(\, 0)|| = C)\ < cc.

Theorem 1.1 (Dynamics in the overlapping resonances regime.) Assume A1-A4.
There is a constant Ao > 0, such that for 0 < |\| < Ao, the following holds. There is a
oo > 0 (depending on \) such that for 0 < o < o and for any wy € Sp, A € My, t > 0, we
have

N N
wo (QE,A(A)) = w5707)\<A> + Z eitsa(U,A)Xa(A) + Z eitaa’b(U’A)XaJ)(A) + O(e_”’t), (1.20)

a=2 a,b=1
a#b
The Xa, Xap i (1.20) are linear functionals on My. They depend on o, A and the initial
condition wy, but not on t. The decay rate v > 0 is independent of \,o and satisfies
v > max{Ime,, Ime, }.

Discussion. The imaginary parts Ime,;, oc A* and Ime, o< 02/)A? (to leading order)
have the associated decay times t; oc A\™2 << t5 o< A?/a?. The representation (1.20) thus
paints the following picture. In the non-degenerate situation, ¢ > 0, the remainder term
becomes negligible very quickly, for t > ¢, = 1/7. Then, for ¢t > ¢; the sum over the x,,
becomes small as well. Finally, for t > ¢, the first sum becomes negligible and in the limit
t — oo, the system is in the coupled equilibrium wg, y. In the degenerate situation, o = 0,
the remainder term is small again after times ¢ > ?j, and again after times ¢t > t;, the
second sum in (1.20) is negligible. However, since £,(0, ) = 0, the first sum is independent
of time and does not decay. The initial state wy (applied to 9%) converges thus to the
final state we = wpox + Y 59 Xa- The final state w., depends on the initial state wy.
It belongs to the manifold of ‘ag, y-invariant states on 91, i.e., it is a convex combination
Y o Ma(wo) ws o @ Wr 4, With initial state dependent mixing parameters j,.

Therefore, two time-scales emerge for the dynamics of systems in the overlapping reso-
nances regime. On a time-scale ; oc A=, which is very short with respect to ty oc A\?/a?,
the initial state approaches a quasi-stationary manifold given by the first two terms on the
r.h.s. of (1.20). For o = 0, this manifold is exactly stationary, but for o > 0 small, the
manifold is only approximately stationary and it decays (into a the single equilibrium) for
times exceeding ty oc A\?/0.

The appearence of different time-scales in open systems (albeit in somewhat different
situations) has been observed before. The paper [12] examines the dynamics of a particle



attracted by two widely separated potential wells and interacting with an infinite reser-
voir. The spacing of the wells, 1/u, and the particle-reservoir interaction A are related by
i = A, Tt is shown that the dynamics of the particle in the weak coupling limit exists.
The interaction between the wells has no effect for times of order 1/\? for 5 > 2. However,
for 0 < B < 2 it has a direct effect on the particle dynamics and modifies the decay induced
by the reservoir alone. The set of invariant states in the two regimes for § are different.
In [1], various master equations for the dynamics of a nonlinear oscillator interacting with a
reservoir are investigated. It is found that different generators yield more accurate descrip-
tions of the reduced oscillator dynamics for different time-scales. In particular, different
generators should be used for times shorter than, and longer than, the inverse of the system
level-spacing. We mention that our analysis is valid for the total system-reservoir dynamics
and for all times ¢ > 0.

Reduced dynamics. Consider initial states of the form wy = wg g ® wr g, where wg o
is a state given by an arbitrary density matrix py on CV, wgo(A) = Trs(pgA). The reduced
density matriz p; of the system at time ¢ > 0 is defined by

Tl“s(ptA> = Ws,0 ®WRgG (Oé;)\(A)), VA € B((CN>,

where the trace is taken over the system space CV. We denote the reduced evolution of
the system by

Ty x(t)po = pr,

and the manifold of initial system states which are invariant under the evolution, by

Mo ={po : Tox(t)po=po Vt>0}.

For o = 0 one can find the dynamics of the reduced density matrix exactly [27,28,31] (see
(2.17)). The manifold My , is the set of all system density matrices which are diagonal in
the eigenbasis of the interaction operator G. Moreover, we show in Appendix A that there
is a constant C' such that, for all initial system states py and all times ¢ > 0,

dist (Mo,A, To,,\(t)po) < Ce 160 djst (MO,A, po) ) (1.21)

The distance dist(Mo ., p) = inf{||7 —p|l1 : T € Mo} is measured in trace norm, ||z||; =
Try/za* for linear operators z on CVV. Here, I'(t) > 0 is the decoherence function (see (2.18))
and v = min{(g, — g5)* : a # b}, where {g,}_, is the spectrum of G. Relation (1.21)
shows that the manifold My  is orbitally stable, meaning that a state initially close to Mg x
remains so for all times. If v > 0 and I'(t) — oo as t — oo, then the system undergoes full
decoherence in the eigenbasis of G (off-diagonal density matrix elements converge to zero
as t — 00). In this case, (1.21) shows that the manifold M, is dynamically attractive,
or asymptotically stable. One shows that for suitable infra-red behaviour of the interaction
form factor g(k), the decoherence function satisfies lim; o, ['(¢)/t = ', with I'ys > 0.
The manifold M, is then approached exponentially quickly, at the rate A2yoT .. We give
further detail in Appendix A.



As the degeneracy is lifted, for small ¢ > 0, the manifold of invariant initial system
states becomes empty, M, = (. All initial states approach a single asymptotic state,
which is the reduction to the small system of the joint system-reservoir equilibrium state
(which is not a product state, see Appendix A). In the regime 0 << |A| << 1, the approach
of the asymptotic state, and hence the dissolution of the manifold M , takes place at a
rate proportional to 02/)\?, as we now show.

The density matrix elements of the small system are given by

[pt]al,E <@a7pt¢b>7 a,b: ]_,...7N. (122)

Theorem 1.2 (Reduced dynamics) Assume A1-A4. There is a Ao > 0 such that for
fized X satisfying 0 < |\| < Ao, the following holds. There is a og > 0 (depending on \) s.t.
if 0 < o < ag, then we have, uniformly int > 0:

— Fora,b=1,...,N,a#b,

[pas = €2 polay + Or(0) + O(N). (1.23)
- Fora=1,...,N,
1 N
[Prlaa = 5 + > Dap(t)poles + Ox(0) + O(N). (1.24)
b=2
Let {oT YN be an orthonormal basis of eigenvectors of T, with Tyl = &,0T and denote by
(0T, c=1,...,N, the components of L (in the canonical basis). Then
N —
Doy(t) = ) e [T, [ ]a.
c=2

Discussion. 1. The resonance energies governing the dynamics of off-diagonals are of
the form (see (1.18))

o? o?
Eap(0, ) = )\25%1) +orap + 2 Zap + O (T) + Ox(c®).
We have the following interpretation:

e \%0,, is a resonance energy for 0 = 0. The imaginary part of d,; is proportional to
(g9 — g»)?. All off-diagonal density matrix elements tend to zero (modulo an error term) as
t — oo if g, # gy for a # b and infra-red behaviour p = —1/2. The system exhibits then
decoherence in the eigenbasis of GG, regardless of whether the system energy is degenerate
or not. The contribution to the decoherence rate of this term is proportional to \2.

e The term linear in o is real, with 7., = [Hs|aa — [Hs|pp. The decay rates of matrix
elements do not depend on the first order in the energy splitting parameter o.

e The second order term in ¢ has generally non-vanishing real and imaginary parts.
The complex z,; are determined by the ratio of matrix elements [Hg].q and differences of
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dea (see (1.15)). The factor 1/A? is due to the presence of the reduced resolvent in second
order perturbation theory in o (here, the ‘non-degenerate energies’ are A%, ;). The sign of
Im z,; can be positive or negative, depending on the model.

2. The resonance energies driving the dynamics of the diagonal density matrix elements

have the form )

2
Eoclo,\) = Qi%fc +0 <"7> + 05(0).

The &, ¢ = 2,..., N, are strictly positive if, for instance, [Hgl,pImd,, # 0 for all a,b
with @ # b (see after (2.44)). Then D, ;(t) decays exponentially quickly in time. Contrary
to the off-diagonals, the diagonal entries of the density matrix evolve as a group: the
value of a given diagonal entry depends on the initial condition of all of them. While the
convergence rate of off-diagonals is proportional to A2, that of the diagonal is proportional
to 02/A2. Hence the convergence of the diagonal, the part of the density matrix in the
manifold M y, is driven by the level splitting, while that of the off-diagonals is driven by
the system-reservoir interaction.

Transition between regimes for the spin-boson model. We consider the small
system to be a spin with Hamiltonian and interaction operator given by

. _1/1 0 w101
Hg =S5 5(0 _1) and G=S5 :§<1 0),

respectively. The parameters o, A are now considered to be small but independent of each
other. We analyze the decoherence properties of the spin in the energy basis. Let ¢35 be
the normalized energy eigenvectors, satisfying Hg¢7 = :i:%gbi, and denote the spin density
matrix elements in this basis by [p]7 = = <¢i, pPrd”. > (and similarly for other matrix
elements). We show in Section 2.7 that

o = 34 3¢ ([poli 4 — [po]Z -),
o7 = =g (L r)et™s + (1/r — 1)e™) [po]5 _,

where = means that terms of order O(A\?) are disregarded (see (2.65)). It is assumed here
that [po]% _ € R (see (2.66) for the general expression) and we have set

| —diy — /7%(0)2 — 1672
m¢(0)
Here, the square root is the principal branch with branch cut on the negative real axis and

€(0) > 0 is a constant proportional to the reservoir spectral density at zero (see (1.14)).
The system has four resonance energies, one is zero and the other three are

with v = %.

N A2 A
wy = 1?775(0), W34 = 1Z7r£(0) +i 1—67T2£(O)2 — o2



These expressions interpolate the values of the previously known, isolated regime (lowest
order in \ for o fixed) and the overlapping resonances values derived here (o small, X fixed;
see also the remark after Theorem 2.5).

The diagonal converges to % at the rate Imw, oc A%, independently of o. The decoherence
rate (decay of the off-diagonal in the energy basis) is obtained as follows.

- Querlapping resonances regime: v << 1 and r ~ —1. Thus, [p]% _ ~ e"*[po]7 _,
2 2
w€(0) A2 °

q

which has decay rate Imw, =~

)

- Isolated resonances regime: 1/y << 1 and r & —ico. Thus, [p]5 _ =~ €™3[p]7 _,
which has decay rate Imw; ~ wgio) A2,

In the isolated resonances regime, the decoherence rate is given by the system-reservoir
coupling constant A\ alone, while in the overlapping case, it depends also on the level
splitting parameter o. For a fixed A, the decoherence rate increases quadratically in o (for
small o). The further its energy levels lie apart, the quicker the spin decoheres.

We define the critical value 7, for which the square root in ws 4 vanishes,

Vi := 5E(0).

This critical value separates two regimes with different qualitative behaviour of the res-
onances ws and wy. As 7 increases from zero to 7,, the resonance ws moves down the

imaginary axis, decreasing from the initial value 3im€(0)A? to 1im&(0)A?, while ws moves

up the imaginary axis, from the origin to fim§ (O))\QQ. The two resonances meet for v = ~,.
As v > ~, increases further, the resonances ws and w4 move horizontally away from the
imaginary axis, their imaginary parts stay constant, equal to iwg (0)A2. This motivates the
sharp definition of the overlapping resonances regime, in the spin-boson model, to be given
by v < 7. and of the isolated resonances regime to be given by v > ~,.

It is interesting to note that in nuclear physics, there is a (to our knowledge not rig-
orously defined) notion of overlapping resonances, used in the description of processes
involving unstable nuclei by non-hermitian Hamiltonians [9,34]. It is observed that in the
overlapping regime, the resonance widths (imaginary parts of resonance energies) segre-
gate into two clusters, one located close to the origin (slow channels), the other at a much
larger value (fast channels). The same occurs in our system: in the overlapping regime,
we have one resonance at zero and another one, wy, close to it. The other two, wy and

1

w3, are much larger, both close to 3im§ (0)A2. As the system transitions into the isolated

resonances regime, the two clusters mix.

2 Resonances and dynamics

2.1 Resolvent representation

The main result of this section is Theorem 2.2. For 6 € R let Uy be the unitary (translation)
on Hg defined by sector-wise action UpQr = Qr and Ugth, (u1, V1, -, Un, Un) = Up(ug +
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0,01, ,u, +60,9,). A vector ¢» € Hp is called Uy-analytic if the map 6 — Uyt is Hg-
valued analytic in {# € C: |0| < 0y} (the ) is that of assumption Al). All vectors of the
form ¢ ® Qg, for arbitrary ¥ € Hg, are Uy-analytic. We introduce the reference state

QO = Qg ® O, (2.1)

where () is the vacuum in Hgi and ()g is the trace state

N
1
Qs =—=> 9u® Pa (2.2)
N a=1

) is cyclic and separating for 201 and we denote the associated modular operator and
modular conjugation by A and J, respectively [7]. We have A = Ag ® Ag, where Ag =
e PIr and Ag = 1 (the trace state is KMS with inverse temperature 5 = 0). The modular
conjugation is J = Js ® Jr. We have Js¢p ® x = ¥ ® ¢ for ¢,x € CV, and where the
bar means complex conjugation of vector components in the basis {¢,}Y ;. Furthermore,
JrUn(ur, 01, U, 0y) = Yp(—ug, V1, ..., —uy,, J,). A suitable generator of the dynamics
is constructed as follows, see [20] and also [25]. On the dense set MM we define the group
U(t) by

U(H)AQ = eH@N ge N A c M, t R, (2.3)
where L(o, A) is the Liouvillian (1.10). We introduce the linear space
Do =D(Lg) ND(NY)nMQ C H, (2.4)
where N = dI'(1) is the number operator.
Proposition 2.1 (a) U(t) is strongly differentiable on Dy and its generator is given by
4
dt

(b) 0 — UpK (0, \)U; has an analytic continuation from 0 € R to {0 € C : |0| < by}, in
the strong sense on Dy. This continuation is given by

li—o U(t) = K(0,\) := Lo(0) + AV — AJAV2V JAY2, (2.5)

K@(O’, )\) = L0’9<U) + )\[9, (26)
where
Loo(0) = Lo(o)+ON
Iy = Vo=V,
Vi = 25Ge 10 (d (g +0) + ool +9) (2.9)
v, = %]1 ®GE® (a*(e§<'+9>§ﬁ(— . =0)) + ae 2 Dg,(— - —9))) (2.10)

(Here, we use the convention g(u) = g(u).)
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Proof. We do not write the dependence of operators on (o, A) in this proof, which
follows [20] (see also [25]).
(a) Let AQ € Dy. Then

d

=0 U AQ = —IALQ +iLAQ = —iA(Lg + AV)Q + (Lo + AV) AQ. (2.11)
Since LoQ = 0 and AVQ = JAYV2V*A*Q = JAYV2V JAY2AQ, the right side of (2.11)
equals iLoAQ +iXN(V — JAY2V JAY2) AQ. This shows part (a).

(b) For real 6, we have

UgK(\U; =Lo + 0N + %G R1I® (a*(gg(- +6))+a(gs(- + 9)))

—%n @G @ (a5 gy(~ - —0)) + ale g, - ~0))).

By assumption (A) we obtain the analytic extension (2.6)-(2.10). Note that in the argument
of the annihilation operators, the analytic extension has the complex conjugate 6, since the
annihilation operators are anti-linear in their argument. U

Theorem 2.2 Assume Al and A2. Let 6 with 0 < Imf < 6y be fizred. There is a A\g > 0
such that for all [\ < Ao and all 0 € R, we have the following. Let ¢ € H and A € M
be such that ¢ and AQ2 are Up-analytic vectors, and such that ¢g € D(\LRﬁJF”), for some
n > 0. Then we have for allt >0
. . —1 .
<¢’ eltL(U7>\)Ae—1tL(a,)\)Q> _ _/ elt? <¢§7 (KQ(O', /\) . Z)_l(AQ)9> dz. (2‘12)
R—i

21

We give a proof of this result in Appendix B.

Remarks. 1. Vectors representing product states of an arbitrary small system state
and the equilibrium reservoir states are of the form ¢ = B}, where B € My (and, recall,
Q) is given in (2.1)). The proof of (2.12) for such ¢ and A € My is easier than that of the
full result. This is the situation of [27].

2. In [25] a spectral dilation deformation is performed simultaneously with the trans-
lation (see also [5,26]). In this doubly-deformed situation, the analogue of Theorem 2.2 is
proven in Section 8 of [25]. The dilation deforms the spectrum of K in a ‘sectorial way’
(a V-shape), leading to useful decay estimates of the (deformed) resolvent (K — z)~", as
|Rez| — oco. However, in the present work, we only use spectral translation and such de-
cay estimates do not hold (as the distance between the spectrum of Ky and the real axis
does not grow now when |Rez| — 00). We therefore need a new proof of this result. The
advantage of only performing the translation deformation is that less restrictive conditions
on the form factor are needed only.
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2.2 Resonances of K(oc =0, )

The operator Ky(0,\) is defined in Proposition 2.1, with Ly = Lg. Recall that ¢,, a =
1,..., N, is the orthonormal eigenbasis of G, (1.6). The operator Ky(0, \) is reduced by
the decomposition

H = P Ran <|¢a><s0a| ® |s0b><sob|> ® Hr.

a,b=1
Namely,
N
Ky(0,)) = €D Kap, (2.13)
a,b=1
where K, acts on Hg as
Kop = Lr + 0N + X(g, Py — Ps), (2.14)

with

(2.15)

To alleviate the notation, we do not display ¢ and A in K.

Theorem 2.3 (Spectrum of K,;) Assume Al and A2. Let § with 0 < Imf < 6y be
fized. There is a Ao > 0 such that if 0 < |\| < Ao, then for alla,b=1,..., N, the operator
K, has a simple eigenvalue )\2(5&;,, where §q, is given in (1.13). All other spectrum of K,
lies in {z € C : Imz > 3ImA}.

Remarks. 1. It follows from Theorem 2.3 and the decomposition (2.13) that the spec-
trum of Ky(0,A) in the strip {z € C : Imz < 3Im@} consists precisely of the eigenvalues
{/\25(171)}9{ »—1 (there are no higher order terms in \). A simple expression for the eigenvec-
tors associated to the non-zero eigenvalues is not available, only a perturbation series is.
However, it is readily seen that the eigenvalue zero has the eigenvectors ¢, ® ¢, ® (g,
a=1,...,N. Indeed, if a = b, then it follows directly from (2.14) that

KooQr = MgaUp(® — JAV2BTAYH QR = 0, (2.16)

since JAY2QJAY2Qp = OOy.

2. If the form factor g satisfies ||gs/ul|3 < oo, then the operator K, (2.14), is unitarily
equivalent to the operator Lg-+const. The condition on the form factor implies the infra-red
behaviour g(k) ~ |k[P for small k, with p > —1/2. Then K,; has a simple real eigenvalue,
as also predicted by (1.13), saying that Imd,;, = 0. In the infra-red singular case, p = —1/2,
the unitary transformation ceases to exist and the eigenvalue becomes complex.
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Proof of Theorem 2.3. The spectrum of K,; for A = 0 consists of a single simple
eigenvalue at zero, with eigenvector {dg, and of horizontal lines of continuous spectrum
{z+Imfn : x € R,n=1,2,...}. The operators &y and @y are infinitesimally small w.r.t.
N (relatively bounded with arbitrarily small relative bound). Analytic perturbation theory
implies that there exists a Ag > 0 such that if 0 < |A| < Ag, then the only spectrum of K,
in {z € C : Imz < Imf/2} is a single, simple eigenvalue. We show that this eigenvalue is
AN28ap, With 0,5 given in (1.13).

The dynamics of the reduced density matriz of the small system has been calculated
explicitly in Proposition 7.4 of [27]. Let ¢y = BSls ® (g be an initial state, where B € g
(the commutant) is arbitrary (see also (2.1)). The reduced system density matrix at time
t, in the basis {¢,}, is given by [pilas = (Yo, €OV (|p) (@a| @ 1g)e HONyg) . Tt is shown
in the above reference that

[pelas = [polas X =20 (2.17)

with aas(t) = (97 — g;) (1) +1(ga — g»)*T'(1), where

L sin
B = [y lg(k)? coth(ZE) =220k, S(t) = L [ [g(k) P H a8 (2.18)
For large times, ay(t) becomes linear,
ab(l
lim 2228 _ 5, (2.19)
t—o0

with 6, given in (1.13). We express the reduced density matrix alternatively, using Theo-
rem 2.2, as
—1 .
[pt]a b — % e‘t"‘ <B*BQS X QR, (K9 — Z)il (|Q0b><g0a| & ﬂS)QS X QR> dz. (220)
R—i

We use that 2OV (|pp)(pa] ® Tg)e HEONB = BeltLON (|} (0,| @ 1g)e 0N | which
holds since B ® 1 belongs to the commutant 9. It follows from the definition (2.2) that
(lp) (pa] ® 1s)Q2s = \/Lﬁgob ® @q. Therefore, we obtain from (2.20) that

1 -1 .
[ptlap = \/—N<B*BQS,%®%> %/ e (Qg, (Kpo — 2) 7' Qg ) dz
R—i
1 .
= [polas %/]R .eltZ<QR,(Kb7a —2)7'QR) dz. (2.21)

Comparing (2.21) and (2.17) yields the identity

. —1 .
el)\QOéa,b(t) — 2_7”/ eltz <QRa (Kb,a _ Z)—IQR> dz. (222)
R—i

Denote the unique eigenvalue of K,; in {z € C : Imz < Imf/2} by (,5(N\) and let Cup
be a small circle around (,;,(A) not including any other point of the spectrum of K,p. By

14



deforming the contour of integration, we have

—1

(o (- o) 10R)de = 5 b ¢ (Qpy (Kap — )" 0n) d= + Ra(t),

R—i 2mi Je,,

(2.23)
with a remainder term small in A and decaying to zero exponentially quickly as ¢ — oo.
This follows from the following result, proven in [27], Proposition 4.2:

Proposition 2.4 ( [27]) Let ¢y € Hs. Then

/ e (1ho @ O, (Koo, \) — 2) " Mho ® Q) dz| < CAZe=3t1m0
R+i2Imb

uniformly in o varying in compact sets. The same bound holds if Kg(o,\) is replaced by
Kop.

3Im€

This result implies that |Ry(¢)] < CA%e~ "1 ! for some constant C'. Since (, () is a simple
pole of the resolvent (K,, — z)~! we can replace e** by el¢t() in (2.23) and we obtain

1 . i
= ¢ (O, (Kap — 2)7'0r) dz = erWe, (M) + Ra(2), (2.:24)

27T1 R—i

where c,5(\) = 3§ (R, (Kop — 2)7'Qr) dz. Combining (2.22) and (2.24) gives

oMo (t)=itCap(N) _ Cap(N) + e_itCa,bO‘)R)\(t)‘

As Im(, (M) < %Imﬁ, we have lim,_,o, e M Ry () = 0. Thus the exponent on the left
hand side converges to a finite number, as t — oo, and so this exponent, divided by t,
tends to zero as t — co. (Note that ¢, () is not zero for small A, by perturbation theory.)
Then, due to (2.19), we have (,(\) = A2,5. The proof of Theorem 2.3 is complete. [

2.3 Resonances of K(o,\)

We now examine the operator Ky(o, A), defined in Proposition 2.1, (2.6)-(2.10), with L,
given in (1.11). We consider Ky(o, A) as an unperturbed part, Ky(0, \), plus a perturbation
oLg (see (1.5)). Since the eigenvalues of Ky(0, A) are isolated (Theorem 2.3), we can apply
analytic perturbation theory to follow them as the perturbation is switched on (o # 0).

Theorem 2.5 (Spectrum of Ky(o,\)) Assume A1-AS3. Let \ be fized, satisfying 0 <
Al < Ao, where Ay is given in Theorem 2.3. There is a o9 > 0 (depending on \) s.t. if
0 < o < 09, then the spectrum of Ko(o,\) in the region {z € C : Imz < {Imé} consists

of simple eigenvalues €,(c, ). Those eigenvalues are analytic functions of o, given by
(1.18). Zero is an eigenvalue of T', (1.17). It is simple if [Hslap # O for all a # b.
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Remark. The theorem assumes the non-degeneracy condition A3. An analysis in
presence of degenerate non-zero resonances A2, can be carried out along the same lines.
We have done this for the spin-boson model. We have checked that the values for the
resonances thus obtained coincide with those obtained in Section 2.7 (to order two in o).

Proof of Theorem 2.5. (A) Non-zero eigenvalues. The non-zero eigenvalues of
Kp(0,\) are simple, given by £,,(0,\) = A*d,,, for a # b. We denote by ¢, ® X,
the eigenvector associated to €,4(0, A), where ¢, = @, ® ¢, and X, is a normalized
vector in Hg, depending on A and 6. The adjoint operator satisfies Ky(0, \)*p,p @ Xobv=

)\25a,bg0a7b®X;‘7b for a vector X;,b satisfying <Xa7b, X;7b> = 1. We denote the Riesz projection
of Ky(0, \) associated to £,4(0,\) by

Pa,b = |90a,b X Xa,b> <(pa,b & X:zk,b|' (225)

By analytic perturbation theory, Ky(o, ) has a simple eigenvalue in the vicinity of A9,
for small o. It is given by

Eap(0,N) = N6, + aegg + 025((32 + Ox(c?), (2.26)
where (see [22, Sect. 11.2.2] and also [32, Thm. XII.12])
ey = Te(LsPuy) = [Hslo — [Hs)op- (2.27)
Here, we have set [Hs|ap = (@a, Hsgp). The second order correction is
ell) = —Tr(Ls(Ky(0, \) = \003) " PapLsPas). (2.28)

We write P for 1 — P for general projections P. We set Py, = |@as)(@ap| and Py =
PoyLs (0ap®@Xap) = (PibLS¢a7b)®Xa7b. Using this and ij = Z(Qd)#mb) Pg’d in expression
(2.28) yields

6513 =— Z (Pap ® Xy, Ls (Kg(0,X) = N00p) ' ea @ Xap) (Peds LsPa) -
(c,d)#(a,b)

‘Replacing’ ¢4 ® X, by the eigenvector . q ® X, 4, we obtain

1
S —— —_ L 2(X* X 2.29
Eab Z )\2<5cd — 6, b)| <9011,b7 S@c,d) | < a,b C7d> + 5? ( )
(c,d)#(ab) ' '
where
= ) (#ap ® X5 Ls(Kp(0,A) = N60p) " Pea @ (Xew — Xap)) (Peds LsPas) -

(e.d)(ab)
(2.30)
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By perturbation theory, we have X,;, = Qr + O()A). Therefore, X.4 — X,p = O(X) and
(X, Xea) = 1+ O(X). Together with the bound (2.34) of Corollary 2.7 below, we obtain

€l < (2.31)

IAI

Finally,
(Pap, Lsped) = Xo=d [Hsa,c — Xa=c [Hs]a,b- (2.32)
Relation (1.18) for a # b follows from (2.29), (2.31) and (2.32) and a little algebra.

Proposition 2.6 (Bound on the resolvent) There are constants C' and Ay (depending
on Im@ only) such that if 0 < |A| < Ao, then we have the following. Fiz any o > 0 and
take complex z satisfying |z| < Co, Imz < $Im0, and dist(€, z) > aX?, where & = {\?d,
a,b=1,...,N} is the set of eigenvalues of K¢(0,\). Then we have

106603 =271 < 4 (15 + e ) 23

where C1 is a constant depending only on Im6.
Knowing the bound on the resolvent we can obtain a bound on the reduced resolvent.

Corollary 2.7 For any a,b=1,..., N we have

1 1
[(K0(0,A) = N00) ™ Pl < Co (1 7 A2), (2.34)

for some constant Cy depending on Imé.

Proof of Corollary 2.7. The reduced resolvent has the representation

—1 _
(K@(O, )\) — )\25(1 b) 1Pab = — (Z — )\2(5(1 b)71<Kg<O, )\) — Z)ilpa bdZ,
27T1 a,b()\) ’ ’

where Ty ,(A\) = {z = A0, + A?rel? : ¢ € [0,27]}, with an appropriate radius r (inde-
pendent of \) such that T, ;(A\) encircles only the eigenvalue A?d,; and such that T',,(\)

lies within the region of z for which the bound (2.33) holds, according to Proposition 2.6.
Then dist(€, z) is a constant times A\?. It follows that

1 1
1(50(0,3) - A%M>%uﬂ<0(le v)ﬂ+n&m>

for some constant C. The bound (2.34) follows from [P, =1 + O(A). O
Proof of Proposition 2.6. Let Pr = [Qr){(Qr|, Pr = 1— Py, and R(z) = (Kp(0,\)—2)7!
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Step 1. For any ¢ € H we have

(1, Pa(Kg(0,X) — 2) Prap)| > Im (¢, Pr(Kp(0, A) — 2) Prep)
= (¢, P (NY?{Imf + A\ImN 2 [,N/2INY2 — Tmz) Pry))
(Imf — C|A| — Imz) || Prey||?

>
> 3lmf || Pryp|*.

By the Cauchy-Schwartz inequality, it follows that || Pr(Ky(0, ) — 2)Prep|| > Imé | Pr)|
and therefore

_ _ 2
|PeR()Prll < . (2.35)

Step 2. Consider the Feshbach map
fz = PR<—Z — )\QIQPRR(Z)PRIQ)PR
= Pr(—2 = NIPRR(0)Prly) Pr + O(N?|2]). (2.36)
Let B )
G. = —\?PrlyPrR(2)PrlyPy. (2.37)

By the isospectrality property of the Feshbach map (see e.g. [6, Theorem IV.1]) we know
that
g,\25a,b Pap @ OQr = /\25a,b Pap @ OR,

for all a,b=1,...,N. We also have G, — G- = O(\?|z — (]), as long as Imz, Im( < ilm@.
It follows that Gy . p ® Qg = )\25%1) Pap @ Qg + O\, for all a,b = 1,...,N. Therefore,

Go = fob:l AN baplPab) (@asl ® Pr + O(A?), and so

N
G = > N6upl@as)(Papl ® Pr+ ON + N?|z]). (2.38)

a,b=1
Using (2.38) and (2.37) in (2.36) shows that

N
Fo=3 (N0up— 2)[@as)(Pasl ® Pr + O(X + N2|2)). (2.39)

a,b=1
The sum on the right side is an invertible operator, the norm of the inverse being

2¢ =1 _ [ -1
lgllaXNM dap — 2| [dist(E, z)] .

Therefore, there is a constant C' s.t. if

M4+ N\2z| < Odist(€, 2), (2.40)
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then F, is invertible and )

FH < ——. 2.41

17 S e (2.41)
Let a > 0 be fixed, and take z s.t. dist(€,2) > aA?. Then (2.40) is satisfied provided A is
small enough and |z| < Ca.

Step 3. The resolvent R(z) is related to PrR(2)Pr and F, ! by (see e.g. [6, Eqn.
(IV.14)])

R(Z) = (PR - PRR(Z)PRKQ(O, )\)PR).F;I (PR - PRK9<0, )\)PRR(Z)PR) + PRR(Z>PR.

We combine this equation with the bounds || Pg Kg(0, A\) Pr|, ||PrKa(0,\) Pr|| < C|A| and
(2.35), (2.41) to arrive at the estimate (2.33). This completes the proof of Proposition 2.6.
U

(B) Zero eigenvalue. Let P(o) be the group projection associated to the eigenvalues
of Ky(o,A) bifurcating out of the origin as o # 0. Here, we consider A fixed and o
small. The null space of Ky(0,)) is known exactly, see (2.16). Let X, € Hgr be the
vector satisfying K, X7, = 0 and (Qg, X},) = 1. We have X}, = Qr + O(\). Then
P(0) = 30 [Paa)(Paal @ [Qm) (X7 |- Note that P(0)LsP(0) = 0. Analytic perturbation
theory gives

Ko(o,\)P(0) = o*Ty + O,(c%)
T, = —P(0)LsKy(0,\)"'LsP(0). (2.42)

.....

Ko(0,) 'pea®@Qr = Kg(0,0) ' 0ea @ (Xeg+ Or — Xea)
1

—1
= )\Tsc,d%’d ® Qg +O0(\), (2.43)

where we use Corollary 2.7 in the last step. Starting from (2.42) and using (2.43), we arrive
at

2i _

= 5T+ o™, (2.44)
where the operator T" has matrix elements [&b = (Paa @ Qr, T ppp @ Qg) given by (1.17).
In this derivation, we also use that &, = —d4, see (1.13). Note that 7" is a real symmetric
matrix, [T]op < 0 for a # b, and [T]oq = —>_;,[T)ap- These properties imply that for
v =(21,...,2x) € CV, (@, Tx) = S0, [[T]as| |xa — 23> > 0. Therefore, if [T]q # 0 for
all @ # b, then zero is a simple eigenvalue of T', with eigenvector proportional to (1,...,1)

and all other eigenvalues of T" are strictly positive.
This completes the proof of Theorem 2.5. U
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2.4 Proof of Theorem 1.1

The proof of these two theorems is based on the resolvent representation, Theorem 2.2, and
on the spectral data given in Theorem 2.5. The procedure follows [5,19,25] (for the path
integration deformation argument) and [27, Theorem 3.1] (for the reduced dynamics).

Let Uy € H (initial state). Given € > 0, we can find a vector ¥, such that (a)
| (Wo, AVo) — (U, AQ) | < ||Ale, for all A € 9, where Q is the reference state (2.1),
and (b) W, is Up-analytic and Us¥, = (V,)g is in the domain of ell®!/2. To produce ¥, one
may first find B € M’ (commutant of M) s.t. || Vo — B < €¢/2 (this can be done by the
cyclicity of Q) and set Uy . = B*B(). Then (a) is verified. Next, one regularizes this vector
to satisfy (b), e.g. by forming Uy, = e_”L%te_"Dze_‘l"agNz\IJLe, where D = dI'(—i9,) is the
generator of spectral deformation and N = dI'(1) is the number operator. Taking n > 0
small enough gives W, satisfying (a) and (b). The set of translation-analytic functionals

So = {(, - Q) : U satisfies (a) and (b)} (2.45)

is hence dense in the set of all states on 9. The translation-analytic observables are defined
by

My = {A € M : AQ is Up-analytic}. (2.46)
Let wg € Sp and A € M. Theorem 2.2 gives
-1 _
nlafal) = o [ (U (o) = 2)7(A2)s) d
R—i

We deform the contour of integration into the upper half-plane, as in [5, 19, 25|, to pick
up the contributions of the poles at the resonance energies of the resolvent by means of
the residue theorem. The integral over the path R — i equals the integral over the path
R + %ilm@ plus the sum of the integrals around circles I'y, each enclosing exactly one
eigenvalue £, of Ky(o, A). While the integral over R + 3ilm# is O(e~ ™9 the integral
around a given eigenvalue eq is

2__7r1i elt? <\I/g, (Kg(o,\) — z)_lAQ> dz = eftfan(@d) <\I/g, @ayb(AQ)9> , (2.47)
Cap
where Q. = 5 $r.  (Ko(o, A) — 2)7'dz is the Riesz spectral projection.

The KMS state of the uncoupled system (A = 0) is given by the standard vector
Qp = Qg 3 ® Q. Here, (g 3 is the unique vector in the standard natural cone, the closure
of {AJsAQg : A € Mg} (recall the definition of s and Jg given in and after (2.2)),
representing the system Gibbs equilibrium state (which is determined by the density matrix
oc e P7Hs) . Perturbation theory of KMS states (see [5,7,13]) tells us that

where L(o, A) is given in (1.10), is the KMS state for the interacting system.
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Consider o > 0. Since Ime,;, > 0 for all @ # b and Ime, , > 0 fora = 2,..., N and since
Qg is an invariant state, it follows by taking ¢ — oo that the quantity (2.47) fora =b =1
is (Qsr, AQsr) = wp o a(A). The remaining contributions to the right side of (1.20) come
from the resonances bifurcating out of the origin (first sum) and those bifurcating out of
£a5(0,A), as o becomes nonzero. We have xo(A4) = (U5, Qu.a(AQ),), and a similar definition
for Xap-

Consider 0 = 0. Then €,,(0,A) = 0 for all @ = 1,..., N. The first two terms on the
right side of (1.20) arise from the projection onto the kernel of Ky(0,\). This defines the
Xa for o = 0. The x,; are again given by the the scalar products on the right side of (2.47).

Note that the y, are not continuous as ¢ — 0, as only the total group projection
associated to the eigenvalues bifurcating out of the origin is continuous (actually analytic),
but not the individual projections.

2.5 Proof of Theorem 1.2

Theorem 2.8 (Reduced dynamics) Let x; be an arbitrary normalized vector in Hg and
let A € Mg be a system observable. Then we have

<X1 ® QR, eitL(Uz)‘)Ae*itL(U,)\)Q>
N
= > @Y (41, QupAQs) (14 0x(0) + O(N) + O(Nei™), (249)
a,b=1

where the e,(0, \) are given in (1.18). Here,

_ |(10a7 ><90a, | if a 7& b
et = { \s@f?(@f!b if a =0, (2.50)

where { @I }N_| is the orthonormal basis of eigenvectors of T, (1.17), so that Tl = &,

Proof of Theorem 2.8. Take the representation (2.12) for a fixed 6. The integral over
the path R — i equals the integral over the path R + %iImH plus the sum of the integrals
around circles I, 5, each enclosing exactly one eigenvalue €, of Ky(o, ). While the integral
over R+ 3iIm/ is O(X2e~711m) (see Proposition 2.4), the integral around a given eigenvalue
Eab 18

- e (x1 ® Qr, (Koo, A) — 2) 7' AQ) dz = e <X1 ® g, @a,bAQ> :

27 Jr, ,

where @a,b == ¢ (Hp(o,A) — z)~!dz is the Riesz spectral projection. By perturbation
theory, we have, for a # b,

Qup = [Pap)(Papl © [ Xap) (Kool + OA(0) = [@as) (Pas| @ [Qr)(Qr| + Or(a) + O(N).
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Similarly, we have Qqq = |01} (07| @ |Qr)(Qr| + Or(0). (Note that T is self-adjoint.) This
completes the proof of Theorem 2.8. 0

We now prove Theorem 1.2. Let pg be the initial density matrix of the small system. It
is represented by a normalized vector x in the GNS space Hg. By the cyclicity of (g there
is a unique element B’ in the commutant My = ey ® B(Hs) such that y = B'Qg. The
evolution of the reduced density matrix elements [pi]ap = (@a, priop) is given by

[tlay = (X ® Qr, €OV (Jop) (pa] @ Ten )e Ny @ Qg )
= (x®Qr, B'e™N (|0 (0q| @ ]l(cN)e’itL(””\)Q> . (2.51)

We can thus use Theorem 2.8. The main term on the right side of (2.49) is

N N
> lteeal@d) <XaB/Qc,d(’90b><30a|®]1(CN)QS>:_\/—E et @N (y, B'Qeatppa), (2.52)
c,d=1 Nc,d:l

by the definition (2.2) of Qg. If a # b then, according to (2.50), Qcapp. vanishes, ex-
cept when ¢ = b and d = a, in which case it equals ¢;,. Then we have (x, B'pp,.) =
VN (x, B'(|go) (al @ Ien|)Qs) = VN [po]ap. We conclude that for a # b, the main term
of [pt)ap is €¥a(@N[pgl, . This shows (1.23). Relation (1.24) is proven in the same way. [J

2.6 Using the Feshbach map

Zero is an eigenvalue of Ky(0,0) of multiplicity N?. By a simple Riesz projection argument,
one shows that, for ¢ and A small, Kj(o,\) has N? eigenvalues in the vicinity of the
origin. The size of the eigenvalues can be estimated as follows. Suppose that z # 0 and
Imz < $Imé, so that z is in the resolvent set of Ky(0,0). If the series

(K(0,0) = 2)' Y [(0Ls + M) (K9 (0,0) — 2)7']"

n>0

(2.53)

converges, then z belongs to the resolvent set of Ky(o, \) and (2.53) equals (Ky(o, \)—2z) 1.
Therefore, if z is a (non-zero) eigenvalue of Ky(o, A), then we must have

(o Ls + Ag)(Ky(0,0) — 2)7H| > 1. (2.54)

Using standard bounds on the interaction, we see that (2.54) implies that there are con-
stants C, ¢ > 0 s.t. if 0,|A| < ¢, then

12| < C(o + |A]). (2.55)

Estimate (2.55) is a bound on the eigenvalues of Ky(o, A) in the vicinity of the origin. The
eigenvalues can be tracked using the Feshbach map. Namely, z € C, Imz < %Ime is an
eigenvalue of Ky(o, A) if and only if it is an eigenvalue of the operator

F. =Py (0Ls — NIy(Ky(o,\) — 2) "' Iy) P (2.56)
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which acts on the smaller space RanPr = CY @ CV. Recall that Pg = |Qr)(Qr].
expanding the resolvent around z = 0, 0 = 0 and A = 0, taking into account (2.55), we
have

F. = Py (0Ls — NI;K4(0,0)"1Ty) Py + O(A2 (o + |>\|)>, (2.57)

provided z is an eigenvalue of Ky(o, A) and o, |\| < ¢. An elementary calculation shows
that the operator F,, viewed as acting on RanPg, has the form

Fo=ols—X(aG?@l1-aGeG+aGeG-alo6) + 0(NX(e+ M),  (258)
where C is defined after (1.5) and a = 1 (g,|k| g) — s7£(0), with £(0) given in (1.14).
Note that the quadratic term in A is diagonal in the basis ¢, ,

N(aG?@1-aG@G+aG 0 G —al®G?)
22 & . .
=5 2 ({9, 1k 7"g) (92 — 93) = im€(0)(9a — 3)°)|@ap) (Pasl-  (2:59)

a,b=1

We conclude from the isospectrality of the Feshbach map and (2.58), (2.59) that the eigen-
values of Ky(0,\) are given by ——( (g,1k|79) (g2 — g7) — in&(0)(ga — 9»)?), modulo a
remainder O(A\?(c + |A|)). This is compatible Wlth the result of Theorem 2.3. However,
from that Theorem, we know in addition that the remainder actually vanishes.

2.7 The spin-boson system

The Feshbach operator (2.58) is represented in the energy basis {¢4 +, ¢4, ¢_+ ¢ _},
where ¢ _ = ¢4 @ ¢_ (etc) and S*¢py = j:%@[, by the matrix

Foo= WH+0(R(e+), (2.60)

127 (0) 0 0 —i27g(0)

0 o+iXre(0)  —i2wg(0) 0

W - 24 4 2 . 261
0 —i27E(0)  —o +i2-7E(0) 0 (2.61)

—i27g(0) 0 0 i2-7£(0)

The four eigenvalues of W are
A2

wy =0, wy= 177r£(0), W3y = 1—775 —7725 — 02, (2.62)

where the square root is the principal branch with branch cut on the negative real axis.
The corresponding eigenvectors of W are

1 1 0 0
1 0 1 0 1 1 1 —r
X1 \/§ O ;X2 \/§ 0 ;X3 1 + T2 r y X4 1 + T2 1 ) ( )
1 -1 0 0
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—diy—/72£(0)2—1672

where r = E0) with v = . The eigenvalues of the adjoint W* are the
complex conjugates w; and the corresponding eigenvectors are
1 1 0 0
. 110 . 1 0 . 1 . -7
X1 = E 0 y X2 = E 0 v X3 = 7 v X4 = 1 (264)
1 -1 0 0

The eigenvectors are normalized as (x;, x7) = 1 and (x;, xj) = 0if i # j. The reduced spin
density matrix, represented in the energy basis ¢, is given by (proceed as for Theorem 1.2
or see [24, Theorem 2.1] and [27])

[e] i = Zeltwj Z [p0i 1 {Prts X5) <Xj;¢nm> (2.65)

j=1 k=4

Here, we take m,n,k,l to stand for either + or —, and = means that we approximate
the true resonances e (the eigenvalues of F,) by the w and we neglect additive O(\?)
terms (uniform in ¢ > 0) on both sides. Using the explicit formulas (2.63), (2.64) for the
eigenvectors xj, Xj, we arrive at

% =5+ 50 (ool 4 — o2, (2.66)

[ - i%ﬂe‘tw?’ (r[poli - + [po)Z 1) + =™ ([pol = — rlpol” 4).

A Invariant states

Invariant system-reservoir states. Let Lgandara = Lo(0) +AV —AJV J be the standard
Liowvillian and let P be the closure of the set {AJAQ : A € 9} (the natural positive
cone associated to (91, €2); see also (2.1)). There is a one-to-one correspondence between
normalized vectors in KerLgiangara N P and normal states on 9 which are invariant under
the dynamics generated by L, (1.10) (see for instance [13]).

For 0 = 0, the standard Liouvillian has a direct sum decomposition as in (2.13), with
‘blocks’ Lgtandard.ap = Lr +M9aP(95) — g P(gs)J }. One can perform the spectral analysis
of this operator in the same way as we do for K (0, \) to see that Ker Lgiangara = span{p, ®

Yo @ Qra}Y_;, where
e PLr+Aga®(95))/2Q)

(A1)

OR. =
e e AIr+ea®(95) 2 |

is the reservoir KMS state with respect to the dynamics generated by the Liouvillian
Lr + 2g.®(gp), denoted by wgr,. This ‘perturbed” KMS state belongs to the standard
natural cone associated to (Mg, 2r) (see e.g. [13]) and hence ¢, ® ¢, ® Qg4 € P.

For ¢ > 0 and under the condition that Kj(o, A) has one-dimensional kernel, the only
invariant state is the coupled equilibrium Qggr introduced in (2.48).
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Invariant initial states of the small system for ¢ = 0. The explicit expres-
sion (2.17) shows that M, the manifold of invariant initial system states, is the set
of density matrices which are diagonal in the eigenbasis {p,}N; of G. Let py be a
given initial density matrix of the small system and set 7 = > [po]a,a|®a)(pal- Then
dist(Mox, po) = ||T—poll1- To see this, let 7, be a sequence in M  such that lim,,_,« ||7, —
polli = dist(Mga, po). By the equivalence of the trace norm and the norm |[|p||max =
maxep | (Pa, poo) | = maxayp |[plas|, we have

170 — poll1 > ¢l|Tn — pollmax > cmgx HTn]a,a - [PO]a,a )

for some constant ¢ > 0. It follows that lim, . max, |[Tu]aa — [P0)aa] = 0 and therefore
lim,, o0 |7 — 7|l = 0. This shows that dist(Mo., po) = ||7 — pol[1. As the dynamics leaves
the diagonal invariant, we also have dist(Mjg x, Tox(t)po) = ||7 — To.x(t)pol|1. Again by the
equivalence of norms, there is a C' > 0 s.t.

I = Toathmll < € mas, [Tor(thpolas] < Ce™ ™ max ool
where we use (2.17) in the last inequality. Finally, maxq .2 |[00]ap] < ¢||7 — polli. The
statement about orbital stability after (1.21) follows. The asymptotic linearity of I'(¢)
follows from (2.19). In three dimensions, lim;,., I'(f) = oo if the infra-red behaviour of the
coupling form factor is g(k) ~ |k|7%/2? as k ~ 0, see (1.13). See also [31].

Absence of invariant initial system states for ¢ > 0. Suppose that zero is a
simple eigenvalue of Ky(o,A). Then for o > 0, the set of invariant initial system states
M, is empty. Indeed, by the property of return to equilibrium, lim; o T5 () po = ps for
all initial states pg, where p, is the reduction to the small system of the coupled system-
reservoir KMS state Qggr (see (2.48)). Therefore, p, is the only possible element in M, .
However, that p. € M, , can be seen as follows. For any A € B(CY) we have

d

T Tren (T2 (H)ps A) = (i @ Qg,i[L(0, A), A ® 1s ® 1]Q2 ® Qr),

t=0

where €2, is the vector representative of p,. The commutator in the last expression equals
o[Hs, Al ® 1s @ Iz + A\[G, A] ® 1s @ ®(gg). Therefore, the above derivative is zero if
and only if (Q ([Hs, Al ® 1)) = (Qsr, ([Hs, A] ® Is ® 1g)Qsr) = 0. By expanding
Qgr x Qy — 5 fo e *Lo/2V 0y + O(N?) (see (2.48)), we obtain

(7
(Qsg, ([Hs, Al @ 1s @ 1) Qsr) = 7 Z (B, — B)(GP.APG)s s frg + O\,  (A2)

where Py is the spectral projection associated to the eigenvalue Ey of Hs, the average (-)s s
is taken in the state Qg g and where fu; = [ g |g5(u, 9)[2 CEZ0EED 4y49 4 O(0).
For small o, we have fi; < 0 for all k,[. By choosing an A s.t. the right side of (A.2) does
not vanish we obtain oTren (ToA(t)ps A) # 0, so py is not invariant.

il
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B Proof of Theorem 2.2

Throughout the proof, we do not write the dependence of operators on (o, A) (i.e., we write
L for L(o,\), and so on).

Let s € C, |s| < 1/2+¢, where € is the constant in Assumption A2. Using the expression
A = Ty, ® e PI® for the modular operator, we get

AigvA—ig — G ® ]ICN ® e—lﬁgLRQ(gﬂ)elﬂgLR

1 . .
= G® ey ® —=(a* (e gg) + ale ¥ gg)). (B.1)

V2

This operator is well-defined and strongly analytic in 5 on D(N'/?), due to assumption
(A2). On D(Ly) N D(N'/?) we define the family of strongly analytic operators in s,

K6 — Lo + )\[(8)’ (B.2)
1) = v\, (B.3)
V/(s) _ AfiSJVJAis _ JAEVA*EJ' (B4)

This family has been introduced in [25]. It interpolates between the self-adjoint K(© and
the operator K(7/2) = K (see (2.5)).

Proposition B.1 Let [ (t) = etto[®)e~0 and recall the definition (2.1) of the reference
state ). The Dyson series

t t1 tn—1
Z(iA)"/ dtl/ dtg---/ dt, IOt (1) --- 19 (£)Q (B.5)
0 0 0

n>0
converges for all A € R and is analytic in s for |s| < 1/2 + .

Proof of Proposition B.1. Let ¢, € Ran P(N < v) (spectral projection of N onto
subspace with at most v particles). Since the interaction operator 1¢*) changes the particle
number by at most one, we have

I (tn>](8) (tny) -~ 7 (t1),
:eit"LOI(S)P(N <v4n-—1einkto... eitlLUI(s)P(N < v)e ko),
The standard bounds |a*(f)(N-+1)~/2| < ||fl| and [la(f)(N-+1)~/2] < ||| give || (N+
1
2

1)~Y2|| < 4M, where M = ([ le(z 981l g (u, o) [2dudo)z < oo due to assumption (A2).
Hence

I ()19 (ta) - IO < V(0 +1) - (v + n)(4M)" |9, ], (B.6)
uniformly in s. This and the analyticity of 1) (t,) 1) (¢, 1) --- I®®)(t,)3, imply that (B.5)
is analytic in s for |s| < % + €. This proves Proposition B.1. 0

We define an operator denoted e on the dense set M2, by
K0 = (B.5) and K AQ) = il Ao TitLetKE™ ) (B.7)
for A € M.
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Proposition B.2 We have e'5' 7% AQ = el Ae=LQ), for all A € 0.

Proof of Proposition B.2. It suffices to show that e5/?Q = Q. Note that
(G 1)Qs = (1® CGC)Qs (sce after (1.5) for the definition of C), JA2QR = Qg and that
®(gp) is selfadjoint. Thus,

590 =[G @ 19 &(gs) — 10 G © JATD(g5)JAF Qs ® Qn
=(G ® 1)Qs @ [D(gs)Qm — JATD(g5)JA2Qg] = 0.

It now follows directly from (B.7) and (B.5) that X" = Q. O

Let ¢ = AQ. Since K® is self-adjoint for s € R, we have

@ﬂwwzi/éﬂmWLW%m,%R (B.8)
R—i

2m

Next we perform the spectral deformation. By analyticity the scalar product in the inte-
grand of (B.8) equals <g# (K(S —2)” 1w9> for all |f| < 6. Here, K(gs) = Loy +)J(§S) is the

analytic extension of Uy K®)U; to complex || < 6. Thus we obtain

<¢, eitK(S)¢> = _—1 /R_i et <<b§, (Ke(s) - z)_1w9> dz, seR. (B.9)

2mi
From now on we take 6 to be a fixed i6, for some 0 < 6 < 6,.

Proposition B.3 Both sides in (B.9) have an analytic extension to s € C, |s| < 1/2 + €.

Since they are equal for real s we have (by the identity principle) that (B.9) stays valid for
all [s| < 1/2 +e.

Taking the value s = —i/2 in (B.9), together with Proposition B.2, gives relation (2.12)
and hence proves Theorem 2.2.

Proof of Proposition B.3. Analyticity of the L.h.s. of (B.9) is immediate from
Proposition B.1 and relations (B.7). To prove the analyticity of r.h.s. of (B.9), we first
prove the convergence of the improper Riemann integral. The second resolvent equation
gives

(K —2)™" = (Log — 2) ™" + (Lop — 2) AL (B — 2) 7L, (B.10)

Accordingly, the right side of (B.9) consists of two terms. The first one, coming from the
uncoupled resolvent, equals <q§, eitL°1/1>. Hence we only need to show the convergence of the

integral
A B S SR B O P O e
: [§] ng, (Log Z) )\[ (K ) ’Lpg dz. (Bll)

21 Jr_;
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Consider

(K —2)7 = (Log + ALY — 2)7!

. (B.12)
= (Lop = 2) 72 [l = (Lo — 2) "2 A7 (Log — 2) 2] 7" (Log — 2) 2.
Since fés)(N + 1)‘% is bounded and (z = z — 1)
1 1 1 2
IV +1)%(Lop — 2) [ = sup AT (B.13)

< —,
n>0jer /(1 — )2+ (On+1)2 ~ V0

we have ||(Log — z)’%)\l(gs)(Log — 2)72|| < 1/2, for |A| small enough. It follows from (B.12)
that . .
(K —2)™" = (Lop — z)’ﬁB(Log —2)73, (B.14)

= 2. This and (B.13) imply that

where B is a bounded operator satisfying || B|| < 1= =

1MLV = 2) 7 (Lop = 2)2]] < O (B.15)
for some constant C. We estimate the integrand in (B.11) as
(5, (Log — =) M () = 2)7 My )|

< O Lty — 2) " 0| 1|(Los — 2)~ 24|
< O+ |27 (L — 2) " ol + (1 + |2]) 72| (Los — 2) " 206]%}
= CIA{S1(x) + Sa(z)}. (B.16)

The last line defines the two functions S; and Sy of x = Rez. Here we use the inequality
ab < aa® +b?/a, for a = (1 + |2|)"/#*, where 0 < 1 < 1/2. We have

Si(x) =(1+ |2 (5, (Los — 2) " (L — 2) ')
ZXILHﬂLWw@Lm—d”@&—@*ﬂNznwa

1—|—|x|
_2/ I — 22+ (On+ 1)2d“”(l)’

where dy, is the spectral measure of Lg associated to vector P(N = n)¢z and P(N = n)
is the spectral projection onto the n particle sector. By Fubini’s theorem,

/51 dx—Z/ / l_$+|$(|;n+1)2dx}dun(l). (B.18)

The integral over z is bounded above by

1 1))zt 1 20 ||zt
/< +|§L|)2 dxg/( +|$D22+1+||2 dz < Cy + m|l|3 7.
R x R x

(B.17)
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We use here that (a +b)" < a" +b" for a,b >0, 0 < r < 1. It follows from (B.18) and this
estimate that

[ Sita)ds < (95,(Cy + rlLal}M0g) < o0, (B.19)
R

We treat the second term in (B.16) in a similar fashion.

[ satarde = [ @ 1a) 4 (o (g = 27 (Lo = 2)Hen) do
ST

where dv, is the spectral measure of Ly associated to vector P(N = n)iyy. The integral
over z is bounded above by

O !
v e AL e

uniformly in [ € R. It follows from the last estimate and (B.20) that

(B.20)

de <C,+m7
! nt T,

/ng(x)dx < (C, + ) ||ee)* < 0. (B.21)

The bounds (B.19) and (B.21) finish the proof that the integral on the right side of (B.9)
converges.

In order to complete the proof of Proposition B.3 (and hence that of Theorem 2.2), we
need to show that the integral on the right side of (B.9) is analytic in s, for |s| < 1 +e¢. To
do so, let v > 0 and set

—1

F(s) = —/1 <¢9,( z)—1¢9>dz, (B.22)

27

which is analytic in s, for |s| < £ 4+ €. Denote by F(s) the right side of (B.9). We have

(J 7 [ on = ot

The above analysis shows that the integrals converge uniformly in s and hence (B.23)
converges to zero uniformly in s. Therefore, F(s) is analytic. This completes the proof of
Proposition B.3 and that of Theorem 2.2. O

|F(s) — F(s)

27T (B.23)
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