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Abstract

We develop a mathematically rigorous theory for the quantum transfer processes
in degenerate donor-acceptor dimers in contact with a thermal environment. We
calculate explicitly the transfer rates and the acceptor population efficiency. The
latter depends critically on the initial donor state. We show that quantum coherence
in the initial state enhances the transfer process. If the electron is initially shared
coherently by the donor levels then the efficiency can reach values close to 100%,
while an incoherent initial donor state will significantly suppress the efficiency. The
results are useful for a better understanding of the quantum electron transport in
many chemical, solid state, and biological systems with complex degenerate and
quasi-degenerate energy landscapes.
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1 Introduction and main results

Electron transfer processes in chemical, physical and biological systems are often modeled based
on the assumption of a two-state donor-acceptor model. However, degeneracies or near degenera-
cies in the energy of the donor and acceptor levels are brought about generically, for example, by
space or spin coordinates [21, 22], and generally by the complexity of the molecules exchanging
the electron. This is the case, in particular, for electron transfer reactions in biomolecules [3, 25]
and chromophores in photosynthetic systems [20, 8]. To model this complexity, one should re-
place the two-state model by a two-level model having degenerate energy levels. The degeneracy
of the donor and acceptor levels may be due to a complicated energy landscape with an effective
potential exhibiting multiple minima at equal energies, but corresponding to different values of
additional ‘coordinates’. In this situation, one may view those minima as different ‘sites’ (e.g.
spatial positions) where the electron can be localized, see Fig. 1. One is then immediately lead
to questions regarding the influence on the transfer process caused by quantum interference, co-
herence and localization or delocalization of the electrons (excitations) to be transferred. With
regard to biology, it was discussed in [5, 24, 9] (and references therein) that degeneracy plays an
important role in the functional robustness and adaptability of biological systems. The notion
of degeneracy is understood and used differently in various publications on that topic, but a
common statement is that degeneracy leads to a significant decrease of fluctuations, rendering
the performance of biological systems more stable.

Fig.1: Energy landscape, three degenerate minima and generalized coordinate X.

The goal of the current work is to analyze the dependence of the transfer process, such as
its rate and efficiency (the amount of population transfer from the donor D to the acceptor A),
on the initial state and the number of degenerate states for D and A. To start a systematic
analysis of these questions, we propose to study here a simple mathematical model, in which the
energies within the donor and the acceptor are exactly degenerate, the direct donor-acceptor
matrix elements are chosen, for simplicity, to be the same between any donor and acceptor site,
and where the DA complex is subject to the influence of a thermal environment. We use the
formalism of quantum electrodynamics. In the current work, we consider a situation close to
equilibrium, meaning that the DA complex is in contact with a single thermal reservoir. It is
possible to extend our formalism to the non-equilibrium situation and include several reservoirs
at different temperatures, giving rise to out of equilibrium stationary states with non-vanishing

2



energy fluxes through the DA system connecting the reservoirs. It has been proposed in [23] that
such a setup can be used to exhibit experimentally the energy degeneracies in certain chemical
compounds.

The parameters of the model are: the donor and acceptor energies ED, EA, with their
respective degeneracies ND and NA, the direct matrix element V between any pair of donor
and acceptor sites and the DA-environment interaction strength λ and temperature, T . Even
though our technique, the dynamical resonance theory, works as well for a DA system coupled
strongly to the environment [18], we consider in the current paper the parameter regime of weak
coupling to the environment, characterized by

λ2 << |ED − EA|, and λ2 << |V |.

Our main results are summarized as follows:

1. We trace out the thermal environment and find the reduced density matrix of the DA
system. We use a mathematically rigorous time-dependent perturbation theory in λ and
find the explicit form for each matrix element of the reduced DA density matrix, valid for
all times t ≥ 0, with an error O(λ2) which is independent of t and ND, NA (Theorem 1.1).

2. We analyze the dynamics of the reduced DA density matrix and show that:

– There is a manifold of explicit invariant states (Remarks 1.1).

– For large times, the DA density matrix approaches an explicit final stationary state
which depends on the initial DA state, (1.32).

– The dynamics of all DA reduced density matrix elements (populations and coher-
ences) is irreversible, determined by explicitly calculated decay rates (Theorem 1.1
and Section 1.4). The decay rates are independent of the initial DA state and of ND,
NA. Generically, the populations in the stationary state are not thermal (no Gibbs
distribution) and coherences in the stationary state do not vanish.

– Define the transfer efficiency to be the acceptor population in the stationary state
(for large t), when starting out completely unpopulated. We show that the transfer
efficiency depends critically on the quantum properties of the initial state. A coherent
spread of the electron position over the donor sites in the initial state enhances the
transfer efficiency dramatically, see Section 1.5.

– The coupled DA reservoir dynamics leaves a two-dimensional DA space invariant.
Namely, there are two fully symmetric states |D〉 and |A〉 (see (1.9)) such that if we
take initial states of the form ρDA ⊗ ρR,β, where ρR,β is the reservoir equilibrium at
inverse temperature β and ρDA is any density matrix of the form ρDA = a|D〉〈D|+
b|A〉〈A| + c|D〉〈A| + c|A〉〈D|, then the following happens. The reduction to the
DA system of the full state at time t is again of the form ρDA(t) = a(t)|D〉〈D| +
b(t)|A〉〈A|+ c(t)|D〉〈A|+ c(t)|A〉〈D|.
However, if the initial DA state is not from this precise two-dimensional subspace,
then the DA state ρDA(t) explores all directions in Hilbert space and does not stay
within the span of {|D〉, |A〉}.
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– We show that the fluctuation of the single donor site population (averaged over
all sites) is proportional to 1/(ND)2. This is in accordance with the central limit
theorem and shows that bigger system size implies smaller fluctuations. This means
that in our simple degenerate donor-acceptor model, fluctuations in electron transfer
are significantly suppressed for large systems. Even though we use a simple (and
quantum mechanical) model, our findings coincide with those found in the literature
on biological systems (e.g. [5, 24, 9]), as mentioned above in the introduction.

3. We outline in Section 1.7 what happens in quasi-degenerate systems, where the donor
and acceptor levels are not all at the same energies, but may vary within energy bands
of size δ which are narrow compared to the size of the noise, δ << λ2. We argue that
two time scales will emerge. On the first one, ∝ λ−2, the dynamics is very close to that
corresponding to the degenerate situation. On a much larger second time scale, ∝ λ2/δ2,
the DA system will feel the effect of the energy spread and converges to a final equilibrium
state. This picture is supported by previous results, in [16] where ND = 1 and NA = 2
was considered, and in [7] where ND = 1, NA is general, but the noise is classical. A
rigorous study of the quasi-degenerate regime is planned.

Let us now present the model and results in more detail (see Section 2 for further mathematial
detail). We consider ND donor states (sites) coupled to NA acceptor states (sites) via a direct
matrix element V (see Fig. 2) and subject to the noise of a heat bath consisting of a collection
of quantum harmonic oscillators, described by the total Hamiltonian

H = HS +HR + λG⊗ ϕ(h). (1.1)

The system Hamiltonian HS and interaction operator G are

HS = ED

ND∑
j=1

|Dj〉〈Dj |+ EA

NA∑
k=1

|Ak〉〈Ak|+ V
∑
j,k

(
|Ak〉〈Dj |+ |Dj〉〈Ak|

)
, (1.2)

G = gD

ND∑
j=1

|Dj〉〈Dj |+ gA

NA∑
k=1

|Ak〉〈Ak|, (1.3)

where |Dj〉 and |Ak〉 are the states in which the jth donor (site) and the kth acceptor (site) is
populated, respectively and ED, EA, V and gD, gA ∈ R are constants. The reservoir Hamilto-
nian is that of a field of independent harmonic oscillators, indexed for concreteness by k ∈ R3

(continuous modes),

HR =

∫
R3

ω(k)a∗(k)a(k)d3k, (1.4)

with dispersion ω(k) = |k|.1 The creation and annihilation operators satisfy the canonical com-
mutation relations [a(k), a∗(k′)] = δ(k − k′). The constant λ in (1.1) is the coupling parameter

1The dynamical resonance theory established in [16, 13, 14], upon which the present work is based,
uses the form ω(k) = |k|. This dispersion relation corresponds to the quantized electromagnetic field.
It is possible to modify the analysis to deal with a class of different dispersion relations. We plan on
elaborating on this elsewhere.
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and ϕ(h) is the field operator

ϕ(h) =
1√
2

∫
R3

(
h(k)a∗(k) + h.c.

)
d3k. (1.5)

The form factor h ∈ L2(R3, d3k) is a square-integrable function. The size of h(k) determines
how strongly the mode (oscillator) k is coupled to the DA complex. Of course, (1.4) and (1.5)
are the continuous versions of the discrete mode analogues

HR =
∑
k

ωka
∗
kak, ϕ(h) =

1√
2

∑
k

(
hka

∗
k + h.c.

)
, (1.6)

which are often used in the literature, and where the continuous mode limit is taken in quantities
of interest after all. We start off directly with a continuous mode reservoir.

The Hamiltonian HS, (1.2), describes a DA system with high symmetry, having the two
properties:

(S1) The energy of each site within the donor and the acceptor is constant, equal to ED and
EA, respectively.

(S2) The direct matrix element between each donor and acceptor site is the same, V .

This symmetry has direct consequences for the dynamics, which we explain in Sections 1.1
and 1.2. We discuss in Section 1.7 how the present situation can be viewed as a starting point
for the analysis when the donor and acceptor energies fluctuate around the values ED and EA
and so does the coupling V , and what to expect in this case.

Fig.2: In HS, each donor site is coupled equally to each acceptor site.

1.1 Symmetry induced manifold of stationary states

The Hamiltonian H, (1.1) is block-diagonal,

H = Heff ⊕HD⊥ ⊕HA⊥. (1.7)
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We now explain the three independent blocks. Heff is the Hamiltonian of an effective dissipative
two-level system with pure state space

H̄S = span{|D〉, |A〉}, (1.8)

spanned by the uniformly populated donor and acceptor states,

|D〉 =
1√
ND

ND∑
j=1

|Dj〉, |A〉 =
1√
NA

NA∑
k=1

|Ak〉. (1.9)

The effective Hamiltonian is

Heff = ED|D〉〈D|+ EA|A〉〈A|+ v
(
|A〉〈D|+ |D〉〈A|

)
+HR

+λ
(
gD|D〉〈D|+ gA|A〉〈A|

)
⊗ ϕ(h), (1.10)

where the effective direct coupling matrix element is given by

v = V
√
NDNA. (1.11)

It follows from (1.10) that Heff leaves the Hilbert space H̄S⊗F invariant, where F is the Hilbert
space of the reservoir. In particular, we have the following. The DA density matrix at any time
will be a state on the two-dimensional space H̄S if the initial DA matrix is. For instance, if the
donor is initially homogeneously populated, in the state |D〉〈D|, then the DA density matrix at
all times is simply a 2 × 2 matrix on H̄S, a mixture of pure states involving only |D〉 and |A〉.
However, as soon as the initial state does not lie within this effective two-state subspace, whose
invariance is protected by symmetry, the evolution of the DA system explores all parts of the
Hilbert space. We thus introduce the following.

(a) HD⊥ is the space of all linear combinations of {|D1〉, . . . , |DND〉} which are orthogonal to
|D〉.

(b) HA⊥ is the space of all linear combinations of {|A1〉, . . . , |ANA〉} which are orthogonal to
|A〉.

The Hamiltonians HD⊥ and HA⊥ in (1.7) have the form

HX⊥ = EX1lS +HR + λgX1lS ⊗ ϕ(h), X = D,A. (1.12)

They act, respectively, on the Hilbert spacesHD⊥⊗F andHA⊥⊗F , where F is the Hilbert space
of the environment. The polaron transformation for quantum oscillators is given by conjugation
with a unitary displacement operator, T = exp{

∑
k αka

∗
k − h.c.} = e

√
2 iϕ(α) (see (1.6)), where

αk ∈ C. It is defined equally well for continuous mode systems. It is well known that, choosing
αk = −iλgXhk/ωk and denoting the resulting displacement operator by TX , the Hamiltonians
HX⊥ in (1.12) are unitarily equivalent to the uncoupled but renormalized reservoir Hamiltonians,

TXHX⊥T
∗
X = HR +

(
EX − 1

2λ
2g2
X‖h/

√
ω‖2

)
1lR, X = D,A. (1.13)

(We explain more details for instance in the proof of Lemma 2.2 below.) Note that modulo
the additive constant, the right side of (1.13) is simply HR, the Hamiltonian of the uncoupled
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reservoir alone. This means that there exist a multitude of invariant states. Namely, let ρR,β be
the reservoir equilibrium state, where β is the inverse temperature. Then e−itHRρR,β e

itHR = ρR,β

and (1.13) implies

e−itHX⊥
(
|ψ〉〈ψ| ⊗ T ∗XρR,βTX

)
eitHX⊥ = |ψ〉〈ψ| ⊗ T ∗XρR,βTX , ∀ψ ∈ HX⊥. (1.14)

This leads to the following fact.

Remarks 1.1 (Stationary states due to symmetry) For X = D,A, introduce the

displacement operators TX = e−
√

2iλgXϕ(ih/ω). Then

1. All density matrices of the form ρS ⊗ (T ∗XρR,βTX), where ρS is any mixture of pure states
taken from HD⊥, are stationary states. All density matrices of the form ρS⊗ (T ∗XρR,βTX),
where ρS is any mixture of pure states taken from HA⊥, are stationary states.

2. Let ρt = e−itHρ0e
itH be the evolution of an initial DA-reservoir density matrix ρ0. In

open systems without degeneracies, where there is a unique stationary state (the coupled
DA-reservoir equilibrium), one expects that generic initial states ρ0 converge to the equi-
librium for large times. However, in the present situation, due to the existence of multiple
stationary states, the asymptotic state (as t→∞) depends on the initial state.

The invariant reservoir part is

T ∗XρR,βTX = e
√

2iλgXϕ(ih/ω)ρR,βe
−
√

2iλgXϕ(ih/ω),

in which the ‘naked’ state ρR,β is ‘dressed’ with excitations due to the interaction with the DA
system (arbitrarily many additional excitations are created in the reservoir, all in the single
particle wave function ∝ h/ω).

The first point in Remarks 1.1 identifies an invariant manifold of dimension dimHD⊥ +
dimHA⊥ = ND + NA − 2. The dimension of the total system is, of course, infinite. The
stationary states identified above are brought about by the symmetry of the Hamiltonian. We
will see that there is exactly one more stationary state (for λ 6= 0), which is the equilibrium
state of the whole, interacting DA-reservoir complex. The second point of Remarks 1.1 is an
obvious general fact for dynamical systems with multiple stationary states.

1.2 An a priori consequence for the dynamics

Due to the decomposition (1.7) the propagator is block-diagonal as well,

e−itH = e−itHeffPeff + e−itHD⊥PD⊥ + e−itHA⊥PA⊥. (1.15)

Here, Peff = |D〉〈D|+ |A〉〈A| and PD⊥, PA⊥ are the orthogonal projections onto HD⊥ ⊗F and
HA⊥ ⊗F , respectively, defined in (a), (b) before (1.12) above. Consider initial states

ρSR(0) = ρ0 ⊗ ρR,β, (1.16)

where ρ0 is an arbitrary density matrix of the donor plus acceptor and ρR,β is the reservoir
thermal equilibrium at temperature T = 1/β > 0. Take now for ρ0 a mixture of pure states
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from the linear span of {|D1〉, . . . , |DND〉}, so that in particular, only donor sites are populated.
Let O be an observable of the donor alone, meaning that the matrix elements of O involving
any |Ak〉 vanish. Then we have

ρ0 =
(
|D〉〈D|+ PD⊥

)
ρ0

(
|D〉〈D|+ PD⊥

)
,

O =
(
|D〉〈D|+ PD⊥

)
O
(
|D〉〈D|+ PD⊥

)
. (1.17)

The expectation value of O at time t is given by

〈O〉t = tr
(
e−itH(ρ0 ⊗ ρR,β) eitH(O ⊗ 1lR)

)
. (1.18)

Due to (1.17) the propagators e±itH in (1.18) are sandwiched between projections,(
|D〉〈D|+ PD⊥

)
e±itH

(
|D〉〈D|+ PD⊥

)
= |D〉〈D|e±itHeff |D〉〈D|+ e±itHD⊥PD⊥. (1.19)

This leads to four terms in (1.18),

〈O〉t = tr
(
|D〉〈D|e−itHeff |D〉〈D|(ρ0 ⊗ ρR,β)|D〉〈D|eitHeff |D〉〈D|(O ⊗ 1lR)

)
+tr
(
|D〉〈D|e−itHeff |D〉〈D|(ρ0 ⊗ ρR,β)eitHD⊥PD⊥(O ⊗ 1lR)

)
+tr
(
e−itHD⊥PD⊥(ρ0 ⊗ ρR,β)|D〉〈D|eitHeff |D〉〈D|(O ⊗ 1lR)

)
+tr
(
e−itHD⊥PD⊥(ρ0 ⊗ ρR,β)eitHD⊥PD⊥(O ⊗ 1lR)

)
. (1.20)

The HamiltonianHD⊥ does not depend on any quantity describing the acceptor. Also, 〈D|e±itHeff |D〉
depends on acceptor quantities only through the energy EA and the effective direct coupling v
(see (1.11)). Hence so does the right side of (1.20).

We make the following definitions.

• The population of the donor (site) k is defined by 〈|Dk〉〈Dk|〉t. This is the probability of
occupation of the kth donor site at time t

• The coherence between the donor sites k and ` is defined by 〈|Dk〉〈D`|〉t, for k 6= `.

From the discussion in this subsection, we thus have the following.

Remarks 1.2 Suppose that the initial DA state ρ0 is supported entirely on the donor, i.e.,
〈Ak|ρ0|A`〉 = 0 = 〈Dk|ρ0|A`〉 for all k, `. Then

1. The population of each donor site and the coherences between any two donor sites, depend
on the acceptor only via EA and v, but are independent of NA, for all times.

2. The asymptotic state of the donor is independent of NA, but it depends on the initial DA
state (c.f. point 2 of Remarks 1.1).

In view of point 2, we investigate in this paper, in particular, how the initial donor state
influences the transfer efficiency of the process (i.e., how much population weight is transferred
from an initially populated donor to the initially empty acceptor).

8



1.3 Main result: Time evolution of the DA system

For all following results, we are assuming a technical condition on the coupling function h ∈
L2(R3, d3k) defining the interaction in (1.1). Define hβ ∈ L2(R× S2, du dΣ) by

hβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
h(u,Σ), u ≥ 0,

−h(−u,Σ) u < 0,
(1.21)

with (u,Σ) ∈ R × S2 and where h on the right side is expressed in spherical coordinates ~k =
(ω,Σ) ∈ R+ × S2. The technical condition we assume is this:

(T) There exists a θ0 > 0 such that θ 7→ hβ(u− θ,Σ) has an analytic extension (as a function
from R to L2(R×S2)) to 0 < Imθ < θ0, and that the extension is continuous at Imθ → 0+.

Condition (T) ensures that the dynamical resonance theory developed in [16, 13] is applicable.
A family of form factors h satisfying condition (T) is given by

h(r,Σ) = rper
2
h1(Σ),

with p = 1/2 + n, n = 0, 1, 2, . . . and where h1 is an arbitrary real function of the angle Σ ∈ S2.
Condition (T) has physical implications which are discussed in [13]. In particular, it implies
exponential decay (in time) of the reservoir correlation function. By modifying the method of
analysis (replacing analytic spectral deformation theory by Mourre theory [10, 11]), one can
relax the analyticity property a lot and only demand the existence of some derivatives in u
of hβ(u,Σ) along the real line, which in turn corresponds to a polynomially decaying reservoir
correlation function. A detailed account of this improvement is in preparation.

Define
H̄S = ED|D〉〈D|+ EA|A〉〈A|+ v

(
|A〉〈D|+ |D〉〈A|

)
, (1.22)

which is the DA part of Heff for λ = 0 (see (1.10)). Its diagonalization is

H̄S = e1|ϕ1〉〈ϕ1|+ e2|ϕ2〉〈ϕ2|, (1.23)

where

e1 = 1
2

{
ED + EA +

√
(ED − EA)2 + 4v2

}
,

e2 = 1
2

{
ED + EA −

√
(ED − EA)2 + 4v2

}
. (1.24)

and2

ϕ1,2 =
1√

v2 + (e1,2 − ED)2

(
v|D〉+ (e1,2 − ED)|A〉

)
. (1.25)

We consider a fixed, but weak coupling between the DA and the noise,

λ2 << e1 − e2 =
√

(ED − EA)2 + 4v2. (1.26)

2Note that limv→0 |ϕ1〉〈ϕ1| = |D〉〈D| and limv→0 |ϕ2〉〈ϕ2| = |A〉〈A|.
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The DA density matrix at time t is obtained by the reduction of the full DA-reservoir state,

ρt = TrR

(
e−itH(ρ0 ⊗ ρR)eitH

)
, (1.27)

where the partial trace is taken over the reservoir degrees of freedom.

Our main result is Theorem 1.1 below, which gives the DA density matrix ρt at all times
t ≥ 0. It gives explicitly every density matrix element (populations and coherences) of ρt for
arbitrary initial DA states. For convenience, let us recall here the definition of the following
projections.

1. PD⊥ is the projection onto HD⊥, which is the space of all pure DA states |ψ〉 which are
linear combinations of {|Dk〉}NDk=1 and which are orthogonal to |D〉, 〈ψ,D〉 = 0.

2. PA⊥ is the projection onto HA⊥, which is the space of all pure DA states |ψ〉 which are
linear combinations of {|A`〉}NA`=1 and which are orthogonal to |A〉, 〈ψ,A〉 = 0.

3. P̄S is the projection onto the effective two-level Hilbert space, H̄S = span{|D〉, |A〉} =
span{|ϕ1〉, |ϕ2〉}.

We also introduce the effective two-level equilibrium Gibbs state as

ρ̄S,β =
e−βH̄S

tr e−βH̄S
, (1.28)

a 2× 2 density matrix acting on H̄S.

Theorem 1.1 (Dynamics of the reduced DA density matrix) Let ρ0 be an arbitrary ini-
tial DA density matrix and set

Pk` = |ϕk〉〈ϕ`|, (1.29)

where ϕ1, ϕ2 are the eigenvectors (1.25). The reduced donor-acceptor density matrix at time
t ≥ 0 is given by

ρt = Tr(ρ0P̄S) ρ̄S,β + PD⊥ρ0PD⊥ + PA⊥ρ0PA⊥ + 2Re eitε
(3)
4 PA⊥ρ0PD⊥ (1.30)

+
eitε

(2)
1

e−βe1 + e−βe2

[
e−βe2P11ρ0P11 − e−βe2P21ρ0P12 − e−βe1P12ρ0P21 + e−βe1P22ρ0P22

]
+2Re eitε

(3)
1 P22ρ0P11 + 2Re

∑
s=1,2

eitε
(s)
2 PD⊥ρ0Pss + 2Re

∑
s=3,4

eitε
(s)
2 PA⊥ρ0P(s−2)(s−2)

+O(λ2),

where the error is uniform in t and ND, NA. The resonance energies ε
(s)
j are complex numbers,

all having strictly positive imaginary parts, satisfying Imε
(s)
j ∝ λ2. Their explicit values are

given in Section 1.4.

Remarks. (1) The resonance energies ε
(s)
j depend on the following parameters: the DA

effective energies e1, e2, the coupling parameters λ, gD, gA, the reservoir spectral density J(ω)
(see (1.39)) and the temperature. They do not depend on ND nor on NA, nor do they depend
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on the initial state ρ0. It follows that the imaginary parts of ε
(s)
j , which determine the temporal

decay in the process, are independent of ND, NA, ρ0.
(2) The ‘topology’ of the error is understood as follows. Denote the main term on the

right side of (1.30) by ρ′t, so that ρt = ρ′t + O(λ2). Then for any DA observable X, we have
Tr(ρtX) = Tr(ρ′tX) + Rt(X), where |Rt(X)| ≤ Cλ2‖X‖, with a constant C independent of
t,X,ND, NA.

(3) Another expression for ρt is obtained by defining xj = e−βej , j = 1, 2, and using that

Tr(ρ0P̄S) ρ̄S,β =
x1

x1 + x2

(
P11ρ0P11 + P12ρ0P21) +

x2

x1 + x2

(
P21ρ0P12 + P22ρ0P22).

The right side of (1.30) can be rewritten,

ρt = ρ0

−1− eitε
(2)
1

x1 + x2

[
x1{P22ρ0P22 − P12ρ0P21}+ x2{P11ρ0P11 − P21ρ0P12}

]
−2Re (1− eitε

(3)
1 )P22ρ0P11 − 2Re (1− eitε

(3)
4 )PA⊥ρ0PD⊥

−2Re
∑
s=1,2

(1− eitε
(s)
2 )PD⊥ρ0Pss − 2Re

∑
s=3,4

(1− eitε
(s)
2 )PA⊥ρ0P(s−2)(s−2)

+O(λ2). (1.31)

The form (1.31) of ρt shows immediately that the main term on the right side reduces to ρ0 for
t = 0.

One readily sees that the main term on the right side of (1.30) has unit trace. As Imε
(s)
j > 0,

the formula (1.30) is directly exhibiting the asymptotic state,

lim
t→∞

ρt = Tr(ρ0P̄S) ρ̄S,β + PD⊥ρ0PD⊥ + PA⊥ρ0PA⊥ +O(λ2). (1.32)

Recall the definitions of donor populations and coherences given after (1.20).

Proposition 1.2 (Donor populations and coherences) Set

[ρ0]ss′ = 〈ϕs, ρ0ϕs′〉 , s = 1, 2 (1.33)

where ϕ1,2 are given in (1.25). Define also

α =
e1 − ED

v
. (1.34)

For all k, ` = 1, . . . , ND, we have

〈Dk, ρtD`〉 = 〈Dk, ρ0D`〉 − (1− eitε
(2)
1 )

1

ND

1− α2

1 + α2

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2
(1.35)

− 2

ND

|α|
1 + α2

Re(1− eitε
(3)
1 )[ρ0]21

−
∑
s=1,2

[
(1− eitε

(s)
2 ) 〈Dk, PD⊥ρ0PssD`〉+ (1− e−it(ε

(s)
2 )∗) 〈Dk, Pssρ0PD⊥D`〉

]
+O(λ2).
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Remarks. (1) The variation of each single matrix element 〈Dk, ρtDk〉 during the transfer
process is typically O(1/ND) since

∑ND
k=1 〈Dk, ρtDk〉 = trρt . 1. Therefore only a macroscopic

group of donor sites can undergo a significant change (of the order one, not O(1/ND)) during
the transfer process. The same holds for acceptor sites.

(2) It follows from (1.24) that e1−ED
v

e2−ED
v = −1, a relation which allows us to replace

easily e2−ED
v by −1/α in our calculations.

It follows from (1.35) that

lim
t→∞
〈Dk, ρtD`〉 = 〈Dk, ρ0D`〉 −

1

ND

1− α2

1 + α2

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2

− 2

ND

|α|
1 + α2

Re[ρ0]21 −
1√
ND
〈Dk, PD⊥ρ0D〉 −

1√
ND
〈D, ρ0PD⊥D`〉

+O(λ2). (1.36)

The last two contributions to the main term on the right side of (1.36) are obtained from the
sum over s in (1.35) by using that

∑
s=1,2 Pss = |D〉〈D|+ |A〉〈A|, so

∑
s=1,2 Pss|Dj〉 = 1√

ND
|D〉.

1.4 Process rates

According to Theorem 1.1, the rates determining the decay of the dynamics are the imaginary

parts of the resonance energies ε
(s)
j . We give here their explicit expressions, which depend on

the matrix elements of the interaction and on the spectral density of noise at the frequency zero
and the transition frequency |e1 − e2| of the effective two-level system. More precisely, set

Ḡ = gD|D〉〈D|+ gA|A〉〈A| (1.37)

and denote its matrix elements in the basis {ϕ1, ϕ2} by

[Ḡ]ij ≡
〈
ϕi, Ḡϕj

〉
=

gDv
2 + gA(ei − ED)(ej − ED)√(

v2 + (ei − ED)2
)(
v2 + (ej − ED)2

) . (1.38)

Also, introduce the spectral density of the reservoir J(ω) by3

J(ω) =
π

4
ω2

∫
S2

|h(ω,Σ)|2dΣ, ω ≥ 0 (1.39)

and define

J̃(0) = lim
ω→0+

J(ω)

ω
. (1.40)

3The definition is J(ω) =
√

π
2 tanh

(
βω/2

)
Ĉ(ω), where Ĉ(ω) = 1√

2π

∫
R e
−iωtC(t)dt is the Fourier

transform of the symmetrized reservoir correlation function C(t) = 1
2 [
〈
eitHRϕ(h)e−itHRϕ(h)

〉
β

+〈
ϕ(h)eitHRϕ(h)e−itHR

〉
β
]. Here, 〈·〉β is the average in the reservoir thermal state.
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The explicit expressions for the resonances appearing in (1.30) are:

ε
(2)
1 = 4iλ2

[ 2

β

(
[Ḡ]211 + [Ḡ]222

)
J̃(0) + [Ḡ]212 coth

(
β|e1 − e2|/2

)
J(|e1 − e2|)

]
,

ε
(3)
1 = e1 − e2 + λ2(x12 + iy12),

ε
(1)
2 = e1 − ED + λ2x1 + 2iλ2

( 1

β
[Ḡ]211J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− e−β(e1−e2)|

)
,

ε
(2)
2 = e2 − ED + λ2x2 + 2iλ2

( 1

β
[Ḡ]222J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− eβ(e1−e2)|

)
,

ε
(3)
4 = ED − EA − λ2(E2

D − E2
A)µ, (1.41)

where we set

µ =
2

π

∫ ∞
0

J(ω)

ω
coth(βω/2)dω (1.42)

and where the real numbers x1, x2, x12 and y12 are given by

x1 =
(
g2
D − [Ḡ]211)µ,

x2 =
(
g2
D − [Ḡ]222

)
µ,

y12 =
2

β

(
[Ḡ]211 + [Ḡ]222 + 2[Ḡ]212

)
J̃(0) + 2[Ḡ]212 coth

(
β|e1 − e2|/2

)
J(|e1 − e2|),

x12 =
(
[Ḡ]222 − [Ḡ]211

)
µ− [Ḡ]212

2

π

∫ ∞
0

J(ω)

ω
e−βu coth(βω/2)dω

− 2

π
[Ḡ]212 P.V.

∫ ∞
0

J(ω) coth(βω/2)
( 1

u− e1 + e2
− 1

u+ e1 − e2

)
dω. (1.43)

The other two resonances appearing in (1.1) are ε
(3)
2 and ε

(4)
2 . They are obtained from the

expressions of ε
(1)
2 and ε

(2)
2 above in (1.41) by replacing ED with EA and gD with gA.

Remark. According to (1.41), the relaxation rates Imε
(s)
j only depend on the spectral

density of noise J(ω) at the frequencies ω = 0 and ω = |e1 − e2|. Consequently, due to (1.39),
these rates only depend on the coupling function h(ω) at these two frequencies. Nevertheless, in
order to be able to derive Theorem 1.1 one must assume that h is a square-integrable function,
i.e.,

∫
R3 |h(ω,Σ)|2ω2dωdΣ < ∞, for otherwise, the Hamiltonian (1.1) cannot be defined as an

operator. In particular, the form factor h must contain an ultra-violet cutoff to guarantee
integrability for large values of ω, even though this cutoff does not appear in the second order
expressions (in λ) for the relaxation rates.

1.5 Transfer efficiency

The total donor population at time t is given by

pD(t) ≡
ND∑
k=1

〈Dk, ρtDk〉 , (1.44)
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and we call the final donor population the quantity limt→∞ pD(t) ≡ pD(∞). Let p1, . . . , pND
be a given probability distribution, 0 ≤ pj ≤ 1,

∑
j pj = 1. We consider two families of initial

states associated to {pj}:

(inc) The incoherent (classical) superposition ρinc =
∑ND

j=1 pj |Dj〉〈Dj |,

(coh) The coherent (quantum) superposition pure state ρcoh = |ψ〉〈ψ|, where |ψ〉 =
∑ND

j=1
√
pj |Dj〉.

For both choices (inc) and (coh), the initial donor population is pD(0) = 1. The incoherent
ρinc may come about due to the prior contact of the donor with a decohering agent, making
its density matrix diagonal. The coherent pure state |ψ〉 can be produced by applying to the
donor molecule a short impulsive pulse of polarization ê, resulting in the initial donor state
|Dê〉 ∝ ê ·

∑
j ~µj |Dj〉, where ~µj is the transition dipole moment vector of Dj [19]. Then |Dê〉〈Dê|

is of the form ρcoh.

The von Neumann entropy of the quantum state ρinc coincides with the entropy of the
probability distribution {pj}, given by −

∑
j pj ln pj . The quantum state ρinc, being pure, has

zero von Neumann entropy. Nevertheless, we can view the entropy of {pj} as a measure for
the coherence in ρcoh. It is maximal (= ln(N)) for the uniform distribution pj = 1/ND, j =
1, . . . , ND, and it is minimal (= 0) when exactly one pj is one and all others vanish.

In this section we show the following.

(1) The final donor population for the incoherent initial state is independent of how the donor
is populated initially. For the initially coherent superposition the final donor population depends
on {pj} and is minimized (best transfer efficiency) for the uniform distribution, pj = 1/ND, for
all j, at which the entropy of the initial distribution {pj} is maximized.

(2) The final donor population for the incoherent initial state is always larger or equal to
that for the coherent initial state. Equality holds if and only if a single donor site is initially
populated, i.e., for {pj} having minimal (= zero) entropy. We conclude that coherence in the
initial state increases the final acceptor population.

(3) At large temperatures, T >> e1 − e2, the final donor population is at least 1−O(1/ND)
for large ND and so the transfer is suppressed. At low temperatures, T << e1 − e2, the final
donor population for the initially incoherent state is again at least 1 − O(1/ND) for large ND.
However, for the initially coherent state, it can reach values close to zero (perfect population
transfer).

Here and below in this section, we understand that we give the expressions for all populations
modulo O(λ2). To show the above mentioned results, we start by using Proposition 1.2 to get

pD(t) = pD(0)− (1− eitε
(2)
1 )

1− α2

1 + α2

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2

−2
|α|

1 + α2
Re(1− eitε

(3)
1 )[ρ0]21

−2Re

ND∑
k=1

∑
s=1,2

(1− eitε
(s)
2 ) 〈Dk, PD⊥ρ0PssDk〉 . (1.45)
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This gives the asymptotic value

pD(∞) ≡ lim
t→∞

pD(t)

= pD(0)− 1− α2

1 + α2

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2
− 2

|α|
1 + α2

Re[ρ0]12

− 2√
ND

ND∑
k=1

Re 〈Dk, PD⊥ρ0D〉 . (1.46)

A direct calculation yields the following results.

(INC) For the initial state ρinc, (1.46) becomes

pD,inc(∞) = 1− 1

ND

1

1 + α2

e−βe1α2 + e−βe2

e−βe1 + e−βe2
. (1.47)

The final donor population is independent of the distribution {pj}. At high and low
temperatures, (1.47) reduces to

pD,inc(∞) ≈


1− 1

2ND
, T >> e1 − e2

1− 1

ND(1 + α2)
, T << e1 − e2.

(1.48)

(COH) For the initial state ρcoh, we have

pD,coh(∞) = 1− 1

ND

1

1 + α2

e−βe1α2 + e−βe2

e−βe1 + e−βe2

( ND∑
k=1

√
pk

)2
. (1.49)

Now the final donor population depends on {pj}. The Cauchy-Schwarz inequality gives

( ND∑
k=1

√
pk

)2
≤
( ND∑
k=1

1
)( ND∑

k=1

pk

)
= ND, (1.50)

and equality holds in (1.50) if and only if pk = 1/ND for all k = 1, . . . , ND. This shows
that the acceptor population (= 1− pD,coh(∞)) is maximized for exactly one initial donor
distribution, namely, the uniform one, in which the excitation is most delocalized. In
particular, the transfer is most efficient for the distribution {pj} having maximal entropy
(= logND), namely the maximal final acceptor population is given by

pmax
A = 1−min

{pj}
pD,coh(∞) =

1

1 + α2

e−βe1α2 + e−βe2

e−βe1 + e−βe2
, (1.51)

with the minimum over the {pj} is achieved uniquely for the uniform distribution.

Since
√
pk ≥ pk we have (

∑ND
k=1

√
pk)

2 ≥ 1 and equality holds if and only if exactly one
of the pk equals one and all other ones vanish. Therefore, the relations (1.47), (1.49) and
(1.50) show that

pD,coh(∞) ≤ pD,inc(∞)
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for any {pj}, with equality if and only if {pj} is supported on a single site. This case is
the one of minimal (namely zero) entropy of {pj}. We conclude that coherence among
the initial donor sites enhances the transfer efficiency.

At high and low temperatures, (1.49) reduces to

pD,coh(∞) ≈


1−

( ND∑
k=1

√
pk

)2 1

2ND
, T >> e1 − e2

1−
( ND∑
k=1

√
pk

)2 1

ND(1 + α2)
, T << e1 − e2.

(1.52)

Consider the low temperature regime with pk = 1/
√
ND. Then pD,coh(∞) = 1− 1

1+α2 . For
α = 0 we have total depletion of the donor, namely pD,coh(∞) = 0. What is the smallest
value of α? Setting

∆ := ED − EA ≥ 0, η :=
∆

2v
≥ 0

we get from (1.34) and (1.24) that

α = α(η) = −η +
√
η2 + 1. (1.53)

The function η 7→ α(η) is strictly decreasing and so it takes its minimum for η → ∞,
where α(∞) = 0. The condition T << e1 − e2 =

√
∆2 + 4v2 = 2v

√
η2 + 1 becomes for

large η simply T << ∆. Therefore, in the regime

0 < v << ∆, T << ∆

we have pD,coh(∞) ≈ 0.

The dynamics of a donor coupled to acceptor levels in a related model are studied in [7]. There,
a single donor level is coupled to NA acceptor levels at possibly different energy levels. The
donor is coupled to each acceptor level by the same, scaled interaction (V → V/

√
N in (1.2),

so V is replaced in the Hamiltonian (1.2) by v, see (1.11)). The noise acts on each donor and
acceptor level (is diagonal in the adiabatic DA basis), similar to (1.1) and (1.3), however, in [7],
the noise is classical (commutative), given by a stochastic process (telegraph noise). For this
model and a degenerate acceptor (NA levels, all at the same energy, as in our situation), it is
shown in [7] that the final donor population is 1/2. This coincides with our finding. Namely, for
ND = 1 (as in that paper) and high temperature (which is believed to be modeled by classical
noise), the donor population given in (1.48) (or equivalently in (1.52)) is also 1/2.

1.6 Population fluctuations

In this section we use our results on the dynamics to show that the variance of the population
of a single averaged donor level is proportional to 1/(ND)2, at each fixed time. This means
that increasing the system (donor) size decreases the population fluctuations of the single donor
level. We show how this stability property occurs in accordance with the central limit theorem.
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In the previous sections, we have analyzed the averages (expectation values) of the donor
population, for instance, (1.44) is the average of the population of all donor sites and similarly,
Tr(ρt|Dk〉〈Dk|) is that of site k alone. The quantum measurement operator associated to the
population of donor k is the projection |Dk〉〈Dk|. Let Xk be the corresponding random variable,
that is, the measurement outcome upon measuring the population of site k. Here Xk takes the
values 0 or 1 and its average and variance, at time t, are given by

〈Xk〉 = Tr(ρt|Dk〉〈Dk|) = 〈Dk, ρtDk〉, (1.54)

Var(Xk) = 〈(Xk)
2〉 − 〈Xk〉2 = 〈Xk〉 − 〈Xk〉2. (1.55)

The last equality is due to (Xk)
2 = Xk, as this random variable takes on the values 0 and 1

only, or equivalently, since |Dk〉〈Dk| is a projection. The random variable

FND =
1

ND

ND∑
k=1

(
Xk − 〈Xk〉

)
(1.56)

is called the fluctuation of the single level population. It characterizes how much, averaged over
all sites (as we take the weighted sum over k), the population of a single level deviates from its
average value. FND has average zero and the standard deviation, which is the square root of its
variance, measures by how much, typically, the site population deviates from the average.

We now calculate the variance of FND . Since its average vanishes, we have

Var
(
FND

)
= 〈(FND)2〉

=
1

(ND)2
Trρt

( ND∑
k=1

|Dk〉〈Dk| − 〈Xk〉
)2

=
pD(t)

(
1− pD(t)

)
(ND)2

. (1.57)

The last equality holds since
ND∑
k=1

〈Xk〉 = pD(t) (1.58)

is the total donor population, defined in (1.44). Relation (1.57) means that the population
fluctuations decrease as a function of the size ND of the donor. Note that the relation (1.57)
holds in general – we did not use the explicit form of ρt or pD(t). Nevertheless, for the specific
model considered in this paper, we can use our explicit form for the donor dynamics, (1.45), and
so we have an explicit expression for the variance of the fluctuation at each moment in time.

Link to the central limit theorem. For a sequence Yk, k = 1, 2, . . . of independent
random variables, having average 〈Yk〉 and variance Var(Yk), the central limit theorem states
that [2] ( N∑

k=1

Var(Yk)
)−1/2

N∑
k=1

(
Yk − 〈Yk〉

)
∼ N (0, 1), (1.59)
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where N (0, 1) is a normal random variable with mean zero and variance one.4 The ∼ means
convergence in distribution, as N →∞. For (1.59) to hold the Yk are not only supposed to be
independent but, strictly speaking, they must also satisfy a certain technical Lyapunov condition.

Without checking this condition, nor addressing the independence of the Xk introduced in
(1.55), we can see what the result of the central limit theorem would imply when applied to Xk.
Namely, (1.59) gives, for Yk replaced by Xk,

ND∑
k=1

(
Xk − 〈Xk〉

)
∼
( ND∑
k=1

Var(Xk)
)1/2

· N (0, 1). (1.60)

Next, from (1.55),
Var(Xk) = 〈Xk〉 − 〈Xk〉2 ≤ 〈Xk〉 (1.61)

and so
ND∑
k=1

Var(Xk) ≤
ND∑
k=1

〈Xk〉 = pD(t). (1.62)

Dividing (1.60) by ND on both sides, taking the variance on both sides and using the bound
(1.62) gives, for large ND,

Var
(
FND

)
=

1

(ND)2

ND∑
k=1

Var(Xk) ≤
pD(t)

(ND)2
. (1.63)

This finding, based on an application of the central limit theorem, is consistent with our exact
formula (1.57). It shows in particular the correct scaling in ND.

Illustration. Let us take the initial DA state to be ρ0 = |D〉〈D|, in which all ND donor
levels are populated, each with equal probability 1/ND, see (1.9). Using that 〈Xk〉 = 〈Dk, ρtDk〉
and (1.35), we obtain5

〈Xk〉 =
µ

ND
+O(λ2/ND), Var(Xk) =

µ

ND

(
1− µ

ND

)
+O(λ2/ND), (1.64)

where µ is independent of k and ND, given by

µ = µ(t) = 1− (1− eitε
(2)
1 )

1− α2

1 + α2

[ 1

1 + α2
− e−βe1

e−βe1 + e−βe2

]
− 2α2

(1 + α2)2

[
1− e−tImε

(3)
1 cos

(
tRe ε

(3)
1

)]
. (1.65)

4Note that in case Var(Yk) = σ2 is the same for all k, (1.59) reduces to
∑N
k=1(Yk−〈Yk〉) ∼

√
NσN (0, 1),

or, 1
N

∑N
k=1(Yk−〈Yk〉) ∼ 1√

N
N (0, σ2). This last form of the central limit theorem is maybe better known.

5Note that the remainder term in (1.62) is O(λ2/ND), not just O(λ2) as one might infer from (1.35).
This is so for the following reason. If instead of taking the observable |Dk〉〈Dk| in the trace in (1.55), we

take
∑ND

k=1 |Dk〉〈Dk|, then our estimate for the size of the remainder is O(λ2), independent of ND. This is

due to the fact that the remainder estimate depends only on the norm of the observable
∑ND

k=1 |Dk〉〈Dk|
which equals one for all ND. Hence the remainder for 〈Xk〉 in (1.62) is O(λ2/ND), since when summing
it up ND times (for k = 1, . . . , ND) we obtain a term O(λ2) independent of ND.
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We conclude from (1.64) that

〈Xk〉 = O(1/ND) and Var(Xk) = O
(
1/ND

)
. (1.66)

On the other hand, we have from (1.57), (1.58) and the value of 〈Xk〉 given in (1.64) that

Var(FND) =
µ(1− µ)

(ND)2
+O

(
λ2

(ND)2

)
= O

(
1/(ND)2

)
. (1.67)

We conclude from (1.66) and (1.67) that the single level variance is by a factor ND larger than
that of the fluctuation of the average level (measured by FND).

1.7 Quasi-degenerate system, broken symmetry

Instead of (1.2), (1.3), one may consider a system where the symmetry is broken,

HS =

ND∑
j=1

(ED + εj)|Dj〉〈Dj |+
NA∑
k=1

(EA + ηk)|Ak〉〈Ak|

+
∑
j,k

(V + νj,k)
(
|Ak〉〈Dj |+ |Dj〉〈Ak|

)
, (1.68)

G =

ND∑
j=1

(gD + γD,j)|Dj〉〈Dj |+
NA∑
k=1

(gA + γA,k)|Ak〉〈Ak|, (1.69)

where εj , ηk, νjk, γD,j , γA,k measure the deviation from the symmetric situation. For simplicity
of the discussion, consider νj,k = γD,j = γA,k = 0, so that the non-symmetric characteristics are
determined entirely by εj , ηk, defining the donor and acceptor energy bands of size

δD = max{|εj − εk|}, δA = max{|ηj − ηk|}. (1.70)

The method of analysis used here can be extended to the regime

δ ≡ max{δD, δA} << λ2 << |e1 − e2|. (1.71)

The first constraint in (1.71) is called the narrow band regime. We note that the second inequality
in (1.71) is not necessary for our method to work. Indeed, in [18] we dealt with systems where λ
is not constrained (including strong coupling). Let us for simplicity continue with the discussion
in the regime (1.71). One can carry out the spectral analysis of the resonances of the system
in terms of a perturbation theory in the two parameters δ and λ, namely, δ/|e1 − e2| << 1,
λ2/|e1 − e2| << 1 and also δ/λ2 << 1.

For a simplified model with one donor and two acceptor levels, we have done a detailed
analysis in [15]. In the general case considered here, we conjecture the same effects to hold.
Namely, there emerge two time scales,

t1 ∝ λ−2 and t2 ∝ λ2/δ2 ∝ t1(λ2/δ)2

satisfying
t1 << t2.
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• For short times, t < t2, the system dynamics feels the energy spread δ > 0 only as an O(δ)
correction, whereas the interaction with the reservoir already drives irreversible dynamics.
In particular, at t ≈ t1, the system state has already decayed to a quasi-stationary state
which depends on the initial state. This quasi-stationary state is, modulo O(δ), the final
state as predicted by the dynamics with δ = 0.

• For intermediate times t1 < t < t2, the system state moves away from the manifold of
quasi-stationary states (in a well prescribed way, with decay directions and speeds given
by resonance theory), See Fig. 3, and

• For large times t > t2, the system approaches a unique final state, which is the coupled
DA-reservoir equilibrium reduced to the DA part.

Fig.3: The two time-scales t1 and t2.

Of course, for the convergence to a unique final state to happen for t > t2, one assumes that
the coupled system, for δ > 0 and λ 6= 0, has a unique stationary state (namely, the equilibrium
state). This is a condition on the interaction which is generically satisfied for systems without
symmetries (called the Fermi Golden Rule Condition), but is not satisfied in the presence of
symmetries.

The above picture is also observed in [7], where a DA model with general NA and ND = 1,
is subjected to a classical noise. It is found there that the dynamics of the acceptor population
has two time scales. On the first one, linked to the properties of the classical noise, the acceptor
population approaches the value 1/2. This coincides with the value our model gives here (the
degenerate case and at high temperature), as explained at the end of Section 1.5. Then, on the
second time scale τNA ∝ (NA/δ)

2, in [7] one finds equal population of all levels, hence a total
acceptor population of 1/(NA+ 1) (since ND = 1). This corresponds to the thermal equilibrium
value at very high temperature and is consistent with our prediction. The dependence of our
t2 (their τNA) on ND and NA will be revealed by calculating the resonances by perturbation
theory in δ (small). This approach will work rigorously. However, whether we can obtain
rigorous bounds on errors valid for all values of ND and NA in this perturbation theory remains
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to be seen. This might be a technical challenge. In the degenerate energy setup considered in
the present paper, this difficulty is dodged since the dynamics is reduced to invariant subspaces
as a consequence of the symmetry of the Hamiltonian.

2 Spectrum, resonances of the Liouville operator

The operator generating the full dynamics is the Liouville operator L. It is the equivalent of the
Hamiltonian H, but expressed in a different Hilbert space than that for H. Namely, L acts on
the purification Hilbert space of the initial state ρ0 ⊗ ρR,β, where ρ0 is an arbitrary DA initial
density matrix and ρR,β is the thermal equilibrium of the reservoir.

2.1 The purification Hilbert space H
We refer to [16, 13, 14] for a detailed exposition of the material in this section. Let ρ0 be an
arbitrary density matrix on the DA system, acting on the Hilbert space

HS = CND ⊗ CNA . (2.1)

The purification of ρ0 is given by a normalized vector ΨS in the ‘doubled Hilbert space’ HS⊗HS,
satisfying Tr(ρ0X) = 〈ΨS, (X ⊗ 1lS)ΨS〉 for any DA observable X ∈ B(HS). For example, the
explicit purification of the DA equilibrium state is given in (3.5).

Similarly, a well known purification of the equilibrium state of the quantum field of oscillators
is given by the so-called Araki-Woods representation of the canonical commutation relations
[1, 14]. It is given as follows. For a ‘single particle wave function’ f ∈ L2(R3, d3k), define
fβ ∈ L2(R× S2, dudΣ) by

fβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
f(u,Σ), u ≥ 0,

−f(−u,Σ) u < 0.
(2.2)

(u,Σ) ∈ R×S2 and f on the right side is expressed in spherical coordinates ~k = (ω,Σ) ∈ R+×S2.
The Araki-Woods, or thermal representation of the creation and annihilation operators a∗(f),
a(f) is given by a∗(fβ), a(fβ), which are simply the creation and annihilation operators acting
on the Fock space

F = C⊗
⊕
n≥1

L2(h⊗sn
β ), hβ = L2(R× S2, dudΣ). (2.3)

In (2.3), h⊗sn
β is the symmetrized n-fold tensor product (Bosons). This is the purification of

the reservoir equilibrium state ρR,β (in the continuous mode, or thermodynamic limit). More
precisely, if P (f1, . . . , fk) is any polynomial of a∗(fi) and a(fj), then

trR

(
ρR,βP (f1, . . . , fn)

)
= 〈ΩR, P ((f1)β, . . . (fk)β)ΩR〉 ,

where ΩR is the vacuum vector in F . Accordingly, the thermal field and Weyl operators are
defined by

ϕ(fβ) =
1√
2

(
a∗(fβ) + a(fβ)

)
, W (fβ) = eiϕ(fβ),
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all acting on F . The total DA-reservoir Liouville (purification) Hilbert space is given by

H = HS ⊗HS ⊗F . (2.4)

Let X be a DA observable (an operator acting on HS). The average of X at time t is given
by

〈X〉t = TrS+R

(
(ρ0 ⊗ ρR,β) eitH(X ⊗ 1lR)e−itH

)
=
〈
Ψ0, e

itL(X ⊗ 1lS ⊗ 1lR)e−itLΨ0

〉
, (2.5)

where Ψ0 = ΨS ⊗ΩR purifies ρ0 ⊗ ρR,β and where L is the Liouville operator, constructed from
the Hamiltonian (1.1), given by

L = LS + LR + λI,

LS = HS ⊗ 1lS ⊗ 1lF − 1lS ⊗HS ⊗ 1lF ,

I = G⊗ 1lS ⊗ ϕ(h)− 1lS ⊗G⊗ ϕ̃(h). (2.6)

The 1lS is the identity operator on HS. The free field Liouvillian, given by

LR =

∫
R×S2

u a∗(u,Σ)a(u,Σ)dudΣ, (2.7)

is self-adjoint for any value of λ ∈ R. This is proven for instance by using Glimm-Jaffe-Nelson
triples techniques, c.f. [6].

In (2.6) and in what follows, we simply write ϕ(h) instead of ϕ(fβ) for the thermal field
operator and we have introduced ϕ̃(h) := ϕ̃(h̄β(−u,Σ)). This quantity is related to the modular
conjugation JR of the thermal field (see e.g. [1, 16] and also (3.22)), defined by

JRϕ(fβ(u,Σ))JR = ϕ̃(f̄β(−u,Σ)). (2.8)

The equilibrium state with respect to the interacting dynamics is represented in the purifi-
cation Hilbert space by the ‘interacting KMS vector’ (Kubo-Martin-Schwinger) [16]

ΩSR,β,λ =
e−β(L0+λG⊗1lS⊗ϕ(h))/2ΩS,β ⊗ ΩR

‖e−β(L0+λG⊗1lS⊗ϕ(h))/2ΩS,β ⊗ ΩR‖
, (2.9)

where (c.f. (2.6))
L0 = LS + LR. (2.10)

Here ΩS,β and ΩR are the (purifications) of the system and reservoir equilibrium (KMS) states.
ΩR is simply the vaccum vector in F , (2.3) and the explicit form of ΩS,β is given in (3.5).

2.2 Decomposition into invariant subspaces

We introduce the decomposition

HS = H̄S ⊕ H̄⊥S , H̄S = span{|D〉, |A〉}, (2.11)

where H̄S is the effective two-level DA space and we set H̄⊥S ≡ (H̄S)⊥. The operators HS and
G, (1.3), are reduced (block-diagonal) in this decomposition,

HS = H̄S ⊕ H̄⊥S , G = Ḡ⊕ Ḡ⊥, (2.12)
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written in block form as

H̄S =

(
ED v
v EA

)
, H̄⊥S =

(
ED1 0

0 EA1

)
,

Ḡ =

(
gD 0
0 gA

)
, Ḡ⊥ =

(
gD1 0

0 gA1

)
. (2.13)

The diagonalization of H̄S is given by H̄S =
∑

j=1,2 ej |ϕj〉〈ϕj |, c.f. (1.25), (1.24). The de-
composition (2.11) induces a decomposition of the total Liouville Hilbert space (2.4) into four
parts,

H =

4⊕
j=1

Hj , with

H1 = H̄S ⊗ H̄S ⊗F ,
H2 = H̄S ⊗ H̄⊥S ⊗F ,
H3 = H̄⊥S ⊗ H̄S ⊗F ,
H4 = H̄⊥S ⊗ H̄⊥S ⊗F .

(2.14)

The Liouvillian L, (2.6), is block-diagonal in this direct sum decomposition,

L =
4⊕
j=1

Lj (2.15)

with

L1 = H̄S ⊗ 1lS − 1lS ⊗ H̄S + LR + λḠ⊗ 1lS ⊗ ϕ(h)− λ1lS ⊗ Ḡ⊗ ϕ̃(h), (2.16)

L2 = H̄S ⊗ 1lS − 1lS ⊗ H̄⊥S + LR + λḠ⊗ 1lS ⊗ ϕ(h)− λ1lS ⊗ Ḡ⊥ ⊗ ϕ̃(h), (2.17)

L3 = H̄⊥S ⊗ 1lS − 1lS ⊗ H̄S + LR + λḠ⊥ ⊗ 1lS ⊗ ϕ(h)− λ1lS ⊗ Ḡ⊗ ϕ̃(h), (2.18)

L4 = H̄⊥S ⊗ 1lS − 1lS ⊗ H̄⊥S + LR + λḠ⊥ ⊗ 1lS ⊗ ϕ(h)− λ1lS ⊗ Ḡ⊥ ⊗ ϕ̃(h). (2.19)

The various 1lS in (2.16)-(2.19) are understood to be the identity operators on the appropriate
(sub-)spaces.

2.3 Spectral analysis of L

Due to the decomposition (2.15), (2.16)-(2.19), the spectrum of L is the union

spec(L) =

4⋃
j=1

spec(Lj). (2.20)

2.3.1 Spectrum and resonances of L1

The operator L1 describes the dynamics of an effective spin-boson system, that is, a two-level
system coupled to a bosonic reservoir. The dynamics of this system is not explicitly solvable,
but can be analyzed by perturbation theory in the setting (1.26).6

6We note that it is also of interest to consider the strong DA-reservoir interaction regime, characterized
by v << λ2 << ED − EA. This regime may be treated by first solving the problem for v = 0 and then
implementing a perturbation theory for small v, as has been done in [18].
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The purification of the the effective DA equilibrium state (1.28) is

Ω̄S,β = Z̄
−1/2
S,β

(
e−βe1/2ϕ1 ⊗ ϕ1 + e−βe2/2ϕ2 ⊗ ϕ2

)
∈ H̄S ⊗ H̄S, Z̄S,β = e−βe1 + e−βe2 . (2.21)

When coupled to the reservoir, the effective two level system has an effective coupled equilibrium
state, which is given according to the perturbation theory of KMS (equilibrium) states by the
vector (in the purification Hilbert space)

Ω̄SR,β,λ = Z
−1/2
β,λ e−β(H̄S⊗1lS−1lS⊗H̄S+LR+λḠ⊗1lS⊗ϕ(h))/2

(
Ω̄S,β ⊗ ΩR

)
∈ H̄S ⊗ H̄S ⊗F , (2.22)

where ΩR is the vacuum in F and Z
−1/2
β,λ is a normalization factor. By the construction of the

Liouville operator, we know a priori that

L1Ω̄SR,β,λ = 0. (2.23)

The eigenvalues of H̄S are e1 and e2, given in (1.24), with associated eigenvectors ϕ1,2,
(1.25). The nonzero eigenvalues of L̄0 = H̄S ⊗ 1l − 1l ⊗ H̄S + LR, acting on H̄S ⊗ H̄S ⊗ F , are
the simple eigenvalues ±(e1 − e2) with associated eigenvectors ϕ12 ⊗ ΩR and ϕ21 ⊗ ΩR, where
ϕ12 = ϕ1 ⊗ ϕ2, ϕ21 = ϕ2 ⊗ ϕ1 and ΩR is the vacuum in F . The other eigenvalue of L̄0 is zero
and is doubly degenerate with eigenvectors ϕ11 ⊗ ΩR and ϕ22 ⊗ ΩR, with ϕ11 = ϕ1 ⊗ ϕ1 and
ϕ22 = ϕ2 ⊗ ϕ2. These eigenvalues are embedded in the continuous spectrum covering all of R.
As the interaction λḠ⊗ 1lS⊗ϕ(h)− λ1lS⊗ Ḡ⊗ ϕ̃(h) is switched on, the above eigenvalues of L̄0

become resonances, some of them acquiring non-vanishing imaginary parts. To describe them,
introduce [Ḡ]ij =

〈
ϕi, Ḡϕj

〉
. A calculation gives

[Ḡ]ij = [Ḡ](ei, ej),

[Ḡ](a, b) =
gDv

2 + gA(a− ED)(b− ED)√(
v2 + (a− ED)2

)(
v2 + (b− ED)2

) . (2.24)

Lemma 2.1 The resonance energies and eigenvectors of L1 are as follows.

(A) Zero remains an eigenvalue of L1 also for λ 6= 0. Call it ε
(1)
1 = 0. The associated

eigenvector is the vector Ω̄SR,β,λ (c.f. (2.22)), which has the expansion

Ω̄SR,β,λ = Ω̄S,β ⊗ ΩR +O(λ2),

Ω̄S,β =
e−βe1/2ϕ11 + e−βe2/2ϕ22√

Tre−βH̄S

, Tre−βH̄S = e−βe1 + e−βe2 . (2.25)

The other resonance close to the origin is ε
(2)
1 = iλ2(γ0+O(λ2)), with associated resonance

eigenvector Ψ
(2)
1 ⊗ ΩR +O(λ2), where

γ0 =
8

β

(
[Ḡ]211 + [Ḡ]222

)
J̃(0) + 4[Ḡ]212 coth

(
β|e1 − e2|/2

)
J(|e1 − e2|),

Ψ
(2)
1 =

eβe1/2ϕ11 − eβe2/2ϕ22√
eβe1 + eβe2

. (2.26)
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(B) A resonance bifurcates out of e1 − e2. It has energy

ε
(3)
1 = e1 − e2 + λ2(x12 + iy12) +O(λ4)

and eigenvector ϕ12 ⊗ ΩR +O(λ2), with

y12 =
2

β

(
[Ḡ]211 + [Ḡ]222 + 2[Ḡ]212

)
J̃(0) + 2[Ḡ]212 coth

(
β|e1 − e2|/2

)
J(|e1 − e2|),

x12 = −1

2

(
[Ḡ]211 − [Ḡ]222

)
P.V.

∫
R×S2

|hβ(u,Σ)|2 1

u
duΣ

−1

2
[Ḡ]212 P.V.

∫
R×S2

|hβ(u,Σ)|2
{e−βu

u
+

1

u+ e2 − e1
− 1

u+ e1 − e2

}
dudΣ.

(2.27)

(C) A resonance bifurcates out of e2 − e1. It has energy

ε
(4)
1 = e2 − e1 + λ2(−x12 + iy12) +O(λ4) (2.28)

with resonance eigenstate ϕ21 ⊗ ΩR +O(λ2). The x12, y12 of (2.28) are given in (2.27).

Proof of Lemma 2.1. The arguments are standard within resonance theory, see [16, 12,
13]. We explain them without giving the explicit calculations.

(A) The state Ω̄S,β⊗ΩR is a KMS state (equilibrium at temperature 1/β) w.r.t. the dynamics
generated by L1|λ=0. By perturbation theory of KMS (equilibrium) states, we know that Ω̄SR,β,λ

is a KMS state for L1 and hence L1Ω̄SR,β,λ = 0 also for λ 6= 0. This shows that the eigenvalue
at the origin persists under perturbation. To track the fate of the remaining part of the twofold
degeneracy of zero as an eigenvalue of L0 (restricted to H1), we utilize perturbation theory.
Namely, the resonance energies and eigenvectors are obtained from the level shift operator

Λ0 = −λ2P0IP̄0(L0 + i0+)−1P̄0IP0, (2.29)

where P0 is the eigenprojection of L0 associated with e = 0 and P̄0 = 1l − P0. Here, the
perturbation (interaction) operator is (c.f. (2.16)) I = Ḡ ⊗ 1lS ⊗ ϕ(h) − 1lS ⊗ Ḡ ⊗ ϕ̃(h). The
operator Λ0 is identified as a two-by-two matrix acting on span{ϕ1, ϕ2}. A standard calculation
gives

〈ϕ1,Λ0ϕ1〉 = 4i
{ 2

β
[Ḡ]211J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− e−β(e1−e2)|

}
,

〈ϕ2,Λ0ϕ2〉 = 4i
{ 2

β
[Ḡ]222J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− e+β(e1−e2)|

}
. (2.30)

We know a priori that Λ0Ω̄S,β = 0 (which follows from L1Ω̄SR,β,λ = 0) and so the second
eigenvalue of Λ0 is its trace, namely, the sum of the two terms in (2.30), which is iλ2γ0 with γ0

given in (2.26). The eigenvector associated to this nonzero eigenvalue has to be orthogonal to
ΩS,β and hence it is as in (2.26).
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(B) The level shift operator associated to the simple eigenvalue e1 − e2 of L0 is one-
dimensional,

Λ12 = −λ2
〈
ϕ12 ⊗ ΩR, I(L0 + i0+)−1Iϕ12 ⊗ ΩR

〉
P12 = λ2(x12 + iy12)P12, (2.31)

where P12 = |ϕ12 ⊗ ΩR〉〈ϕ12 ⊗ ΩR| and x12, y12 are given in (2.27).
(C) This follows again by calculation, or more elegantly, from the well known symmetry [12]

between the level shift operator associated to e1 − e2 and that of e2 − e1. �

2.3.2 Spectrum and resonances of L2

Consider the decomposition
(H̄S)⊥ = H̄D⊥ ⊕ H̄A⊥ (2.32)

where H̄D⊥ and H̄A⊥ are the subspaces introduced in points 1 and 2 before (1.28). Recall that
PD⊥ and PA⊥ are the orthogonal projections onto H̄D⊥, H̄A⊥. The operator L2 is block-diagonal
in the decomposition

H̄S ⊗ H̄⊥S ⊗F =
(
H̄S ⊗ H̄D⊥ ⊗F

)
⊕
(
H̄S ⊗ H̄A⊥ ⊗F

)
.

We have

H̄⊥S PD⊥ = EDPD⊥, H̄⊥S PA⊥ = EAPA⊥, Ḡ⊥S PD⊥ = gDPD⊥, Ḡ⊥S PA⊥ = gAPA⊥. (2.33)

The restrictions of L2 to H̄S ⊗ H̄D⊥ ⊗F and H̄S ⊗ H̄A⊥ ⊗F are, respectively

L2,D⊥ =
(
H̄S − ED + LR + λḠ⊗ ϕ(h)− λgDϕ̃(h)

)
⊗ PD⊥, (2.34)

L2,A⊥ =
(
H̄S − EA + LR + λḠ⊗ ϕ(h)− λgAϕ̃(h)

)
⊗ PA⊥, (2.35)

where the operators in the parentheses act on H̄S ⊗ F . The spectrum of L2 is the union of the
spectra of L2,D⊥ and L2,A⊥.

For λ = 0, the eigenvalues of L2,D⊥ are e1−ED and e2−ED, both having degeneracy ND−1
(= rankPD⊥). The eigenspaces are Ran |ϕ1〉〈ϕ1| ⊗ PD⊥ ⊗ |ΩR〉〈ΩR| and Ran |ϕ2〉〈ϕ2| ⊗ PD⊥ ⊗
|ΩR〉〈ΩR|, respectively (where Ran stands for the range of a projection). In the same way, for
λ = 0, the eigenvalues of L2,A⊥ are e1 −EA and e2 −EA, both having degeneracy NA − 1. The
eigenspaces are Ran |ϕ1〉〈ϕ1|⊗PA⊥⊗|ΩR〉〈ΩR| and Ran |ϕ2〉〈ϕ2|⊗PA⊥⊗|ΩR〉〈ΩR|, respectively.

To analyze the spectrum of L2 for λ 6= 0, we proceed as follows. We perform a polaron
transformation to get rid of the terms −λgDϕ̃(h) and −λgAϕ̃(h) in (2.34) and (2.35), and then
we do perturbation theory in λ.
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Lemma 2.2 All four eigenvalues of L2 for λ = 0 turn into resonances, given by

ε
(1)
2 = e1 − ED + λ2x1 + 2iλ2

( 1

β
[Ḡ]211J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− e−β(e1−e2)|

)
+O(λ4),

x1 =
1

2
g2
D‖hβ/

√
ω‖2 − 1

2
[Ḡ]211 P.V.

∫
R×S2

|hβ(u,Σ)|2 1

u
dudΣ

−1

2
[Ḡ]212 P.V.

∫
R×S2

|hβ(u,Σ)|2 1

u− e1 + e2
dudΣ, (2.36)

ε
(2)
2 = e2 − ED + λ2x2 + 2iλ2

( 1

β
[Ḡ]222J̃(0) + [Ḡ]212

J(|e1 − e2|)
|1− eβ(e1−e2)|

)
+O(λ4),

x2 =
1

2
g2
D‖hβ/

√
ω‖2 − 1

2
[Ḡ]222 P.V.

∫
R×S2

|hβ(u,Σ)|2 1

u
dudΣ

−1

2
[Ḡ]212 P.V.

∫
R×S2

|hβ(u,Σ)|2 1

u− e2 + e1
dudΣ. (2.37)

The other two resonances are ε
(3)
2 and ε

(4)
2 , obtained from the expressions of ε

(1)
2 and ε

(2)
2 above

in (2.36), (2.37) by replacing ED with EA and gD with gA. The eigenspaces associated to these
eigenvalues are

E(1)
2 = Ran

(
|ϕ1〉〈ϕ1| ⊗ PD⊥ ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.38)

E(2)
2 = Ran

(
|ϕ2〉〈ϕ2| ⊗ PD⊥ ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.39)

E(3)
2 = Ran

(
|ϕ1〉〈ϕ1| ⊗ PA⊥ ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.40)

E(4)
2 = Ran

(
|ϕ2〉〈ϕ2| ⊗ PA⊥ ⊗ |ΩR〉〈ΩR|

)
+O(λ2). (2.41)

The multiplicity of each distinct resonance is the same as that of the corresponding eigenvalue
for λ = 0 (namely, rankPD⊥ or rankPA⊥). The O(λ2) terms in (2.38)-(2.41) and the O(λ4)
remainders in (2.36), (2.37) are uniform in ND and NA.

Remark. The exact meaning of Ran
(
|ϕ1〉〈ϕ1| ⊗ PD⊥ ⊗ |ΩR〉〈ΩR|

)
+ O(λ2) in (2.38) (and

similarly for (2.39)-(2.41)) is E(1)
2 = Ran(|χ〉〈χ| ⊗ PD⊥), where χ = ϕ1 ⊗ΩR +O(λ2) is a vector

on the first DA-tensor factor and the reservoir tensor factor. The O(λ2) correction is a vector
in HS ⊗F with the O(λ2) property holding uniformly in the size of ND.

Proof of Lemma 2.2. We first treat L2,D⊥. Define the unitary operator T = JRW (λ
2gDh
iω )JR,

where JR is the reservoir modular conjugation and W (f) = eiϕ(f) is the thermal Weyl operator.
Note that T commutes with all reservoir observables. We conjugate L2,D⊥ with T ,

TL2,D⊥T
∗ =

(
H̄S + LR + λḠ⊗ ϕ(h) + c

)
⊗ PD⊥, (2.42)

where c = −ED + 1
2λ

2g2
D‖h/

√
ω‖2. The operator in parentheses in (2.42) acts on the space

HS ⊗ F . The relation (2.42) is obtained in a standard way by taking into account that for all
f, g,

W (f)LRW (f)∗ = LR − ϕ(iωf) + 1
2‖
√
ωf‖22,

W (f)ϕ(g)W (f)∗ = ϕ(g)− Im 〈f, g〉 . (2.43)
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We now analyze the spectrum of H̄S + LR + λḠ ⊗ ϕ(h). For λ = 0 this operator has the two
simple eivenvalues e1 and e2 with associated eigenvectors ϕ1 ⊗ ΩR and ϕ2 ⊗ ΩR. The lowest
order correction to e1 due to the perturbation λḠ⊗ϕ(h) is (again, given by the level shift oper-
ator) −λ2

〈
ϕ1 ⊗ ΩR,

(
Ḡ⊗ ϕ(h)(H̄S + LR − e1 + i0+)−1Ḡ⊗ ϕ(h)

)
ϕ1 ⊗ ΩR

〉
. An explicit calcula-

tion yields (2.36). The eigenvectors of TL2,D⊥T
∗ are ϕj⊗χ⊗ΩR+O(λ2), for arbitrary normalized

χ ∈ RanPD⊥ and j = 1, 2. Consequently, the ones for L2,D⊥ are T ∗ϕj ⊗ χ ⊗ ΩR + O(λ2). But
T ∗ = 1lR + O(λ2) and hence the eigenvectors of L2,D⊥ are of the form ϕj ⊗ χ ⊗ ΩR + O(λ2).
This proves (2.38). The results (2.37) and (2.39) are derived in the same way.

Finally, the same analysis is applicable for the operator LD,A⊥, we need just to replace ED
by EA and gD by gA in the final expressions (compare (2.34) and (2.35)). �

2.3.3 Spectrum and resonances of L3

Just as for L2, the operator L3 is block-diagonal in the decomposition

H̄⊥S ⊗ H̄S ⊗F =
(
H̄D⊥ ⊗ H̄S ⊗F

)
⊕
(
H̄A⊥ ⊗ H̄S ⊗F

)
.

The associated blocks are denoted by L3,D⊥ and L3,A⊥,

L3,D⊥ = PD⊥ ⊗
(
ED − H̄S + LR − λḠ⊗ ϕ̃(h) + λgDϕ(h)

)
, (2.44)

L3,A⊥ = PA⊥ ⊗
(
EA − H̄S + LR − λḠ⊗ ϕ̃(h) + λgAϕ(h)

)
. (2.45)

Let C be the operator of complex conjugation acting on HS (taking complex conjugates of
components of vectors when written in the energy basis). Denote by JR the reservoir modular
conjugation operator. Then C⊗JR is an antilinear involution (meaning its square is the identity
operator) acting on HS ⊗F . We have

ED − H̄S + LR − λḠ⊗ ϕ̃(h) + λgDϕ(h) (2.46)

= −(C ⊗ JR)
(
H̄S − ED + LR + λḠ⊗ ϕ(h)− λgDϕ̃(h)

)
(C ⊗ JR).

It follows from this relation and (2.34), (2.44) that z ∈ spec(L3,D⊥) ⇔ −z̄ ∈ spec(L2,D⊥) and
that eigenvectors are related by the application of C ⊗ JR. Analogous relations hold for L3,A⊥
and L2,A⊥. Consequently, we obtain the following directly from Lemma 2.2.

Lemma 2.3 All four eigenvalues of L3 for λ = 0 turn into resonances, given by

ε
(j)
3 = −

(
ε

(j)
2

)∗
, j = 1, . . . , 4 (complex conjugate) (2.47)

where ε
(j)
2 are given in (2.36)-(2.37) (and the sentence thereafter). The associated eigenspaces

are

E(1)
3 = Ran

(
PD⊥ ⊗ |ϕ1〉〈ϕ1| ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.48)

E(2)
3 = Ran

(
PD⊥ ⊗ |ϕ2〉〈ϕ2| ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.49)

E(3)
3 = Ran

(
PA⊥ ⊗ |ϕ1〉〈ϕ1| ⊗ |ΩR〉〈ΩR|

)
+O(λ2), (2.50)

E(4)
3 = Ran

(
PA⊥ ⊗ |ϕ2〉〈ϕ2| ⊗ |ΩR〉〈ΩR|

)
+O(λ2). (2.51)
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The multiplicity of each distinct resonance is the same as that of the corresponding eigenvalues
for λ = 0.

2.3.4 Spectrum of L4

We again use the decomposition (2.32) and the relations (2.33) to write L4, given in (2.19), as

L4 = LR + λEDPD⊥ ⊗ PD⊥ ⊗
(
ϕ(h)− ϕ̃(h)

)
+(ED − EA)PD⊥ ⊗ PA⊥ + LR + λPD⊥ ⊗ PA⊥ ⊗

(
EDϕ(h)− EAϕ̃(h)

)
+(EA − ED)PA⊥ ⊗ PD⊥ + LR + λPA⊥ ⊗ PD⊥ ⊗

(
EAϕ(h)− EDϕ̃(h)

)
+LR + λEAPA⊥ ⊗ PA⊥ ⊗

(
ϕ(h)− ϕ̃(h)

)
= L4,1 + L4,2 + L4,3 + L4,4. (2.52)

Again, the spectrum of L4 is the union of the spectra of L4,j , j = 1, . . . , 4.

Lemma 2.4 Suppose that the form factor satisfies ‖hβ/
√
u‖2 < ∞. The following holds for

arbitrary values of the coupling constant λ ∈ R.

(A) The spectra of L4,1 and L4,4 consist of an eigenvalue at zero and absolutely continuous

spectrum covering R. We denote these two eigenvalues ε
(1)
4 = ε

(2)
4 = 0. The kernels of L4,1 and

L4,4 have dimension (ND − 1)2 and (NA − 1)2, respectively, and are given by

KerL4,1 = Ran PD⊥ ⊗ PD⊥ ⊗ |ΨD〉〈ΨD|,
KerL4,4 = Ran PA⊥ ⊗ PA⊥ ⊗ |ΨA〉〈ΨA|, (2.53)

where ΨX is given by (recall (2.8) defining JR)

ΨX = W
(

iλEXh/ω
)
JRW

(
iλEXh/ω

)
JRΩR ∈ F , X = D,A. (2.54)

(B) The spectrum of L4,2 consists of the eigenvalue

ε
(3)
4 = ED − EA − 1

2λ
2(E2

D − E2
A) ‖h/

√
ω‖22 (2.55)

having multiplicity (ND−1)(NA−1) and purely absolutely continuous spectrum covering R. The
eigenspace is given by RanPD⊥ ⊗ PA⊥ ⊗ |ΨDA〉〈ΨDA|, where ΨDA is given in (2.56).

(C) The spectrum of L4,3 consists of the eigenvalue ε
(4)
4 = −ε(3)

4 (with ε
(3)
4 as given in (2.55))

having multiplicity (ND − 1)(NA− 1), and of purely absolutely continuous spectrum covering R.
The eigenspace is given by RanPA⊥⊗PD⊥⊗ |ΨAD〉〈ΨAD|, where ΨAD (and for later use, ΨDA)
are given by

ΨDA = W
(EDh

iω

)
JRW

(EAh
iω

)
JRΩR and ΨAD = W

(EAh
iω

)
JRW

(EDh
iω

)
JRΩR. (2.56)

Proof. (A) Consider the operator LR + α(ϕ(h) − ϕ̃(h)), α ∈ R, which acts purely on
the reservoir Hilbert space. Here, ϕ̃(h) = JRϕ(h)JR, see (2.8). We introduce the polaron
transformation, given by conjugation with the bounded operator

T = W
(αh

iω

)
JRW

(αh
iω

)
JR,
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where W (f) = eiϕ(f) is the Weyl operator. The relations (2.43) with f = αh
iω and g = h, give

T
(
LR + α(ϕ(h)− ϕ̃(h))

)
T ∗ = LR. (2.57)

It follows from (2.57) that

TL4,1T
∗ = LR

(
PD⊥ ⊗ PD⊥ ⊗ 1lF

)
. (2.58)

The statement (A) of the lemma follows from the unitary equivalence (2.58).
Now we prove (B). Consider

L4,2 = (ED − EA)PD⊥ ⊗ PA⊥ + LR + PD⊥ ⊗ PA⊥ ⊗
(
ϕ(λEDh)− ϕ̃(λEAh)

)
=

(
(ED − EA) + LR + ϕ(λEDh)− ϕ̃(λEAh)

)
PD⊥ ⊗ PA⊥ ⊗ 1lF . (2.59)

We modify the above polaron transformation T to

T ′ = W
(λEDh

iω

)
JRW

(λEAh
iω

)
JR.

Then, again using (2.43) one verifies readily that

T ′
(
LR + ϕ(λEDh)− ϕ̃(λEAh)

)
(T ′)∗ = LR − λ2

2 (E2
D − E2

A) ‖h/
√
ω‖22. (2.60)

Combining (2.60) with (2.59) we arrive at

T ′L4,2(T ′)∗ =
(
LR + (ED − EA)− λ2

2 (E2
D − E2

A) ‖h/
√
ω‖22

)
PD⊥ ⊗ PA⊥ ⊗ 1lF . (2.61)

The statements in (B) now follow from the unitary equivalence (2.61). The proof of (C) is
entirely the same as that of (B). This completes the proof of Lemma 2.4. �

3 The dynamics

3.1 Resonance theory

According to (2.5), the average of X at time t is given by

〈X〉t =
〈
Ψ0, e

itL(X ⊗ 1lS ⊗ 1lR)e−itLΨ0

〉
, (3.1)

where Ψ0 = ΨS ⊗ ΩR, with ΨS the purification of the initial DA density matrix ρ0 and ΩR the
vacuum vector in F , (2.3).

We start by giving the purification vector ΩS,β representing the DA equilibrium density
matrix

ρS,β = Z−1
S,β e

−βHS = Z−1
S,β e

−β(H̄S+H̄⊥S ) = Z−1
S,β

(
P̄Se

−βH̄S + P̄⊥S e
−βH̄⊥S

)
, (3.2)

where P̄S = |D〉〈D| + |A〉〈A| is the projection onto H̄S, see (2.11). The eigenvalues e1,2 and
eigenvectors ϕ1,2 of H̄S are given in (1.24) and (1.25). To express the purification of ρS,β as a
normalized vector in HS ⊗HS, we introduce

{ξD,1, . . . , ξD,ND−1} and {ξA,1, . . . , ξA,NA−1}, (3.3)
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which are orthonormal bases of RanPD⊥ and RanPA⊥, respectively (see after (1.15)). Each ξD,j
is a vector in CND+NA whose last NA components are zero and whose first ND components
add up to zero (ξD,j ⊥ |D〉). Each ξA,j has vanishing first ND components and the sum of the
other ones is zero. The union of all ξD,j and ξA,j is an orthonormal basis of Ran(P̄S)⊥. The
purification of the density matrix ρS,β is the vector ΩS,β ∈ HS ⊗HS given by

ΩS,β = Z
−1/2
S,β

( ∑
j=1,2

e−βej/2ϕj ⊗ ϕj +
∑

α=A,D

e−βEα/2
Nα−1∑
j=1

ξα,j ⊗ ξα,j
)
, (3.4)

ZS,β = Tre−βHS =
∑
j=1,2

e−βej +
∑
α=1,2

(Nα − 1)e−βEα . (3.5)

The interacting equilibrium state (2.9) is separating (a property following from the general theory
of KMS equilibrium states [4]), meaning that there is an operator B′ acting on H having the
property that

Ψ0 = ΨS ⊗ ΩR = B′ΩSR,β,λ and B′ commutes with eitL(X ⊗ 1lS ⊗ 1lR)e−itL (3.6)

for all system observables X. Moreover,

B′ = 1lS ⊗B ⊗ 1lR +O(λ2) (3.7)

(see e.g. [10], Lemma 3.4). Concretely, the operator B is obtained solving the relation

ΨS =
(
1lS ⊗B

)
ΩS,β, (3.8)

which has a unique solution for any given ΨS.

Example. Take the pure initial system state in which each donor level is populated equally,
with probability 1/ND. The corresponding purified vector state is ΨS = |D〉 ⊗ |D〉, see (1.9).
We show how to solve (3.8) for B. We will find a B acting nontrivially only on H̄S, i.e.,
satisfying Bξα,j = 0 (see (3.4)). We expand |D〉 in the eigenbasis {ϕ1, ϕ2} (see (1.25)), |D〉 =
x1|ϕ1〉+ x2|ϕ2〉, where x1, x2 ∈ R. Thus we need to solve the following equation for B,

x2
1ϕ11 + x1x2

(
ϕ12 + ϕ21

)
+ x2

2ϕ21 =
(
1lS ⊗B

)
(α1ϕ11 + α2ϕ22), (3.9)

where ϕij = ϕi ⊗ ϕj and αj = Z
−1/2
S,β e−βej/2. Taking 〈ϕ1| ⊗ 1lS on both sides of (3.9) gives

x2
1ϕ1 + x1x2ϕ2 = α1Bϕ1 and similarly we get x1x2ϕ1 + x2

2ϕ1 = α2Bϕ2. Hence, as a matrix in
the basis {ϕ1, ϕ2}, we get

B =

(
x2

1/α1 x1x2/α1

x1x2/α2 x2
2/α2

)
= Z

1/2
S,β

(
x2

1e
βe1/2 x1x2e

βe1/2

x1x2e
βe2/2 x2

2e
βe2/2

)
= Z

1/2
S,β e

βH̄S/2

(
x2

1 x1x2

x1x2 x2
2

)
= Z

1/2
S,β e

βH̄S/2
∣∣x1ϕ1 + x2ϕ2

〉〈
x1ϕ1 + x2ϕ2

∣∣
= Z

1/2
S,β e

βH̄S/2|D〉〈D|. (3.10)

Even though this B is determined explicitly in (3.10) we will see below that we can find the
dynamics without using the specific form of B (see for instance (3.26)).
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We combine (3.6)-(3.8) with (3.1) to obtain

〈X〉t =
〈
Ψ0, e

itL(X ⊗ 1lS ⊗ 1lR)e−itLΨ0

〉
=

〈
Ψ0, B

′eitL(X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ

〉
=

〈
Ψ0, (1lS ⊗B ⊗ 1lR)eitL(X ⊗ 1lS ⊗ 1lR) ΩS,β ⊗ ΩR

〉
+O(λ2), (3.11)

where the remainder is uniform in t. We have used in the second step that LΩSR,β,λ = 0 and in
the last one that

ΩSR,β,λ = ΩS,β ⊗ ΩR +O(λ2). (3.12)

Writing for short
B ≡ 1lS ⊗B ⊗ 1lR and X ≡ X ⊗ 1lS ⊗ 1lR, (3.13)

we obtain from (3.11) that

〈X〉t =
〈
ΨS ⊗ ΩR,

(
BeitLX

)
ΩS,β ⊗ ΩR

〉
+O(λ2)

=
4∑
j=1

〈
ΨS ⊗ ΩR,

(
BeitLjPjX

)
ΩS,β ⊗ ΩR

〉
+O(λ2), (3.14)

where we have used the reduction (2.15) of the dynamics and where Pj is the orthogonal pro-
jection onto Hj , c.f. (2.14). The dynamical resonance representation now gives a concrete
perturbation expansion for each propagator eitLj (c.f. [16, 17, 13, 10, 11]). Namely, in (3.14) we
can use the expansion

eitLj =
4∑
s=1

eitε
(s)
j Π

(s)
j +O(λ2), (3.15)

where the remainder is bounded independently of time t. Here, j labels the invariant sectors

and s ranges over the number of distinct eigenvalues and resonances ε
(s)
j of Lj (there happen

to be four of them for each j, see Lemmas 2.1-2.4). Here Π
(s)
j is the eigenprojection (resonance

projection) associated to ε
(s)
j , given explicitly in Lemmas 2.1-2.3 and which we now list modulo

O(λ2) terms. An equality leaving away the O(λ2) errors, which are uniform in t ≥ 0, is indicated
by

.
= . From Lemma 2.1,

Π
(1)
1

.
= |Ω̄S,β〉〈Ω̄S,β| ⊗ |ΩR〉〈ΩR|, c.f. (2.25)

Π
(2)
1

.
= |Ψ(2)

1 〉〈Ψ
(2)
1 | ⊗ |ΩR〉〈ΩR|, c.f. (2.26)

Π
(3)
1

.
= |ϕ12〉〈ϕ12| ⊗ |ΩR〉〈ΩR|,

Π
(4)
1

.
= |ϕ21〉〈ϕ21| ⊗ |ΩR〉〈ΩR|. (3.16)

Lemma 2.2 gives (c.f. (2.38))

Π
(s)
2

.
=

{
|ϕs〉〈ϕs| ⊗ PD⊥ ⊗ |ΩR〉〈ΩR|, s = 1, 2,
|ϕs−2〉〈ϕs−2| ⊗ PA⊥ ⊗ |ΩR〉〈ΩR|, s = 3, 4.

From Lemma 2.3 we get (c.f. (2.49))

Π
(s)
3

.
=

{
PD⊥ ⊗ |ϕs〉〈ϕs| ⊗ |ΩR〉〈ΩR|, s = 1, 2,
PA⊥ ⊗ |ϕs−2〉〈ϕs−2| ⊗ |ΩR〉〈ΩR|, s = 3, 4.

(3.17)
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Finally, Lemma 2.4 shows that, for arbitrary λ ∈ R (c.f. (2.53))

Π
(1)
4 = PD⊥ ⊗ PD⊥ ⊗ |ΨD〉〈ΨD|,

Π
(2)
4 = PA⊥ ⊗ PA⊥ ⊗ |ΨA〉〈ΨA|,

Π
(3)
4 = PD⊥ ⊗ PA⊥ ⊗ |ΨDA〉〈ΨDA|,

Π
(4)
4 = PA⊥ ⊗ PD⊥ ⊗ |ΨAD〉〈ΨAD|. (3.18)

The expressions for Π
(j)
4 , j = 1, . . . , 4, are exact equalities, there are no remainders in the four

relations (3.18).

We combine (3.14) and (3.15) and use the expressions (3.16)-(3.18). We view Π
(s)
j , for

j = 1, 2, 3, as operators on HS ⊗HS (i.e., we leave out the factor |ΩR〉〈ΩR|, c.f. (3.16)-(3.17)).

For j = 4 we introduce the notation Π̃
(j)
4 to denote the ‘part on the DA space’, for instance (c.f.

(3.18))

Π̃
(1)
4 = PD⊥ ⊗ PD⊥. (3.19)

We arrive at the following result.

Proposition 3.1 Let ΨS and X ∈ B(HS) be any initial DA state and any DA operator (ob-
servable). Then

〈X〉t =
3∑
j=1

4∑
s=1

eitε
(s)
j

〈
ΨS, BΠ

(s)
j XΩS,β

〉
+

4∑
s=1

eitε
(s)
4

〈
ΨS, BΠ̃

(s)
4 XΩS,β

〉
+O(λ2), (3.20)

with a remainder independent of time t ≥ 0.

Remark. According to (3.18), the last sum in (3.20) is actually

4∑
s=1

ws e
itε

(s)
4

〈
ΨS, BΠ̃

(s)
4 XΩS,β

〉
, (3.21)

with weights w1 = | 〈ΨD,ΩR〉 |2, w2 = | 〈ΨA,ΩR〉 |2, w3 = | 〈ΨDA,ΩR〉 |2, w4 = | 〈ΨAD,ΩR〉 |2,
where the ΨX are defined in (2.54) and (2.56). The wj depend on λ and satisfy wj = 1 +O(λ2).
Since the remainder in (3.20) is already O(λ2) we can replace wj by 1. One can also calculate
wj exactly, as we illustrate now.

Explicit form of w1: Call for short f = iλEDh/ω, so w1 = | 〈W (f)JRW (f)JRΩ,Ω〉 |2. Re-
membering that we are in the thermal representation of the quantum field, the Weyl operators
W (f) are given by eiϕ(fβ), where test function fβ is defined by (2.2). The effect of conjugating
with JR is ([4, 16]):

JRW (fβ(u,Σ))JR = W (fβ(−u,Σ)) = W (−e−βu/2fβ(u,Σ)). (3.22)

Then, using the CCR, W (f)W (g) = e−
i
2

Im〈f,g〉W (f+g), together with 〈ΩR,W (h)ΩR〉 = e−
1
4
‖h‖2
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(for f, g, h ∈ L2(R× S2, du× dΣ)), one readily obtains

w1 =
∣∣ 〈ΩR,W

(
(1− e−βu/2)fβ

)
ΩR

〉 ∣∣2
= exp−1

2

∫
R×S2

(1− e−βu/2)2

|1− e−βu|
|f(|u|,Σ)|2u2dudΣ

= exp−
∫
R3

tanh(β|k|/4)|f(k)|2d3k

= exp−λ2E2
D

∫
R3

tanh(β|k|/4)

|k|
|h(k)|2d3k. (3.23)

In (3.23), the function h is the form factor of the interaction, (1.1). Similarly one obtains w2

and one can also calculate w3,4 explicitly along these lines.

3.2 Proofs of Theorem 1.1 and Proposition 1.2

Proof of Theorem 1.1. To derive the result we use the expansion (3.20) given in Proposition
3.1 and analyze the individual terms in this expansion.

◦ Consider j = 1 and s = 1. We have〈
ΨS, BΠ

(1)
1 XΩS,β

〉
=
〈
ΨS, (1lS ⊗B)Ω̄S,β

〉 〈
Ω̄S,β, (X ⊗ 1lS)ΩS,β

〉
(3.24)

and using the expressions of Ω̄S,β and ΩS,β given in (2.25) and (3.4), we obtain〈
Ω̄S,β, (X ⊗ 1lS)ΩS,β

〉
= Z

−1/2
S,β

∑
j=1,2

e−βej/2
〈
Ω̄S,β, (X ⊗ 1lS)ϕj ⊗ ϕj

〉
= c−1 Tr

(
ρ̄S,βP̄SXP̄S

)
, (3.25)

where we have taken into account that ϕj ⊥ ξα,` in (3.4) and we have introduced

c =

√
Tre−βHS

Tre−βH̄S
. (3.26)

Next, it follows from (3.4) that

ϕk` ≡ ϕk ⊗ ϕ` =
√

Tre−βHS eβe`/2
(
|ϕk〉〈ϕ`| ⊗ 1lS

)
ΩS,β, k, ` ∈ {1, 2}. (3.27)

Due to (3.8), this implies the relation

(1lS ⊗B)ϕk` =
√

Tre−βHS eβe`/2
(
|ϕk〉〈ϕ`| ⊗ 1lS

)
ΨS, k, ` ∈ {1, 2}. (3.28)

Therefore, we obtain from (2.25)〈
ΨS, (1lS ⊗B)Ω̄S,β

〉
=

e−βe1/2√
e−βe1 + e−βe2

〈ΨS, (1lS ⊗B)ϕ11〉+
e−βe2/2√

e−βe1 + e−βe2
〈ΨS, (1lS ⊗B)ϕ22〉

= c
(
[ρ0]11 + [ρ0]22

)
, (3.29)
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where
[ρ0]k` = 〈ϕk, ρ0ϕ`〉 = 〈ΨS, (|ϕ`〉〈ϕk| ⊗ 1lS)ΨS〉 . (3.30)

Combining (3.24) with (3.25) and (3.30) gives〈
ΨS, BΠ

(1)
1 XΩS,β

〉
=
(
[ρ0]11 + [ρ0]22

)
Tr
(
ρ̄S,βP̄SXP̄S

)
. (3.31)

◦ Next we look at j = 1, s = 2. Using the definition (2.26) gives〈
ΨS, (1lS ⊗B)Ψ

(2)
1

〉
=

eβe1/2√
eβe1 + eβe2

〈ΨS, (1lS ⊗B)ϕ11〉 −
eβe2/2√

eβe1 + eβe2
〈ΨS, (1lS ⊗B)ϕ22〉

=

√
Tre−βHS

eβe1 + eβe2

(
eβe1 [ρ0]11 − eβe2 [ρ0]22

)
= ce−β(e1+e2)/2

(
eβe1 [ρ0]11 − eβe2 [ρ0]22

)
. (3.32)

Combining (3.32) with〈
Ψ

(2)
1 , (X ⊗ 1lS)ΩS,β

〉
= c−1

〈
Ψ

(2)
1 , (X ⊗ 1lS)Ω̄S,β

〉
=

〈ϕ1, Xϕ1〉 − 〈ϕ2, Xϕ2〉
c
√

(eβe1 + eβe2)(e−βe1 + e−βe2)

yields (use
√

e−βe1+e−βe2
eβe1+eβe2

= e−β(e1+e2)/2)〈
ΨS, (1lS ⊗B)Π

(2)
1 XΩS,β

〉
=

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2

(
〈ϕ1, Xϕ1〉 − 〈ϕ2, Xϕ2〉

)
. (3.33)

◦ Next we address the cases j = 1, s = 3, 4. Using (3.28) we obtain

〈ΨS, (1lS ⊗B)ϕ12〉 = eβe2/2
√

Tre−βHS [ρ0]21. (3.34)

Combining (3.34) with

〈ϕ12, (X ⊗ 1lS)ΩS,β〉 =
e−βe2/2 〈ϕ1, Xϕ2〉√

Tre−βHS

(3.35)

gives 〈
ΨS, (1lS ⊗B)Π

(3)
1 XΩS,β

〉
= [ρ0]21 〈ϕ1, Xϕ2〉 . (3.36)

The case s = 4 is addressed just like s = 3, with the result〈
ΨS, (1lS ⊗B)Π

(4)
1 XΩS,β

〉
= [ρ0]12 〈ϕ2, Xϕ1〉 . (3.37)

◦ Now we consider j = 2, s = 1, . . . , 4. We need to analyze〈
ΨS, (1lS ⊗B)Π

(1)
2 (X ⊗ 1lS)ΩS,β

〉
= 〈ΨS, (1lS ⊗B)(|ϕ1〉〈ϕ1| ⊗ PD⊥)(X ⊗ 1lS)ΩS,β〉

= 〈ΨS, {(|ϕ1〉〈ϕ1|X)⊗ (BPD⊥)}ΩS,β〉
= 〈ΨS, {(|ϕ1〉〈ϕ1|XPD⊥)⊗B}ΩS,β〉
= 〈ΨS, (|ϕ1〉〈ϕ1|XPD⊥)ΨS〉
= Tr

(
ρ0|ϕ1〉〈ϕ1|XPD⊥

)
. (3.38)
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In the third step we have used that (1lS ⊗ PD⊥)ΩS,β = (PD⊥ ⊗ 1lS)ΩS,β (see (3.4)) and in the
fourth one that (1lS ⊗B)ΩS,β = ΨS.

Proceeding in the same way for Π
(2)
2 we readily obtain〈

ΨS, (1lS ⊗B)Π
(2)
2 (X ⊗ 1lS)ΩS,β

〉
= Tr

(
ρ0|ϕ2〉〈ϕ2|XPD⊥

)
. (3.39)

Finally, for Π
(s)
2 with s = 3, 4, the same analysis holds and we get〈
ΨS, (1lS ⊗B)Π

(s)
2 (X ⊗ 1lS)ΩS,β

〉
=

{
Tr
(
ρ0|ϕ1〉〈ϕ1|XPA⊥

)
, s = 3,

Tr
(
ρ0|ϕ2〉〈ϕ2|XPA⊥

)
, s = 4.

(3.40)

◦ Consider j = 3, s = 1, . . . , 4. Proceeding as for j = 2 and also using that (1lS ⊗
|ϕ`〉〈ϕ`|)ΩS,β = (|ϕ`〉〈ϕ`| ⊗ 1lS)ΩS,β, ` = 1, 2 (see (3.4)) we readily get〈

ΨS, (1lS ⊗B)Π
(s)
3 (X ⊗ 1lS)ΩS,β

〉
=

{
Tr
(
ρ0PD⊥X|ϕs〉〈ϕs|

)
, s = 1, 2,

Tr
(
ρ0PA⊥X|ϕs−2〉〈ϕs−2|

)
, s = 3, 4.

(3.41)

◦ Take now j = 4. Proceeding in a by now standard way, as above, we get

〈
ΨS, (1lS ⊗B)Π̃

(s)
4 (X ⊗ 1lS)ΩS,β

〉
=


Tr
(
ρ0PD⊥XPD⊥

)
s = 1

Tr
(
ρ0PA⊥XPA⊥

)
s = 2

Tr
(
ρ0PD⊥XPA⊥

)
s = 3

Tr
(
ρ0PA⊥XPD⊥

)
s = 4

. (3.42)

The result of Proposition 3.1 together with the relations (3.31), (3.33), (3.36), (3.37), (3.38),
(3.39), (3.40), (3.41), (3.42) implies

〈X〉t =
(
[ρ0]11 + [ρ0]22

)
Tr
(
ρ̄S,βP̄SXP̄S

)
(3.43)

+Tr
(
ρ0PD⊥XPD⊥

)
+ Tr

(
ρ0PA⊥XPA⊥

)
+eitε

(3)
4 Tr

(
ρ0PD⊥XPA⊥

)
+ eitε

(4)
4 Tr

(
ρ0PA⊥XPD⊥

)
+eitε

(2)
1

e−βe2 [ρ0]11 − e−βe1 [ρ0]22

e−βe1 + e−βe2

(
〈ϕ1, Xϕ1〉 − 〈ϕ2, Xϕ2〉

)
+eitε

(3)
1 [ρ0]21 〈ϕ1, Xϕ2〉+ e−it(ε

(3)
1 )∗ [ρ0]12 〈ϕ2, Xϕ1〉

+
∑
s=1,2

eitε
(s)
2 Tr

(
ρ0|ϕs〉〈ϕs|XPD⊥

)
+
∑
s=3,4

eitε
(s)
2 Tr

(
ρ0|ϕs−2〉〈ϕs−2|XPA⊥

)
+
∑
s=1,2

eitε
(s)
3 Tr

(
ρ0PD⊥X|ϕs〉〈ϕs|

)
+
∑
s=3,4

eitε
(s)
3 Tr

(
ρ0PA⊥X|ϕs−2〉〈ϕs−2|

)
+O(λ2),

where the remainder term is uniform in t ≥ 0. Now since {ϕ1, ϕ2} is an orthonormal basis of
H̄S = RanP̄S, we have [ρ0]11 + [ρ0]22 = Tr(P̄Sρ0), so the first term on the right side of (1.30) is
Tr(ρ0P̄S)Tr(P̄Sρ̄S,βP̄SX), which gives the first contribution to the right side of (1.30). The other
ones are obtained similarly from (3.43). This concludes the proof of Theorem 1.1. �
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Proof of Proposition 1.2. This is a direct calculation of the right hand side of (1.31),
taking into account the relations

〈Dk|P11ρ0P11|D`〉 =
1

ND

1

1 + α2
[ρ0]11,

〈Dk|P12ρ0P21|D`〉 =
1

ND

1

1 + α2
[ρ0]22,

〈Dk|P22ρ0P22|D`〉 =
1

ND

α2

1 + α2
[ρ0]22,

〈Dk|P21ρ0P12|D`〉 =
1

ND

α2

1 + α2
[ρ0]11,

〈Dk|PD⊥ρ0PD⊥|D`〉 = 〈Dk|ρ0|D`〉+
1

ND
〈D|ρ0|D〉

− 1√
ND

(
〈Dk|ρ0|D〉+ 〈D|ρ0|D`〉

)
,

PA⊥|Dk〉 = PA⊥|D`〉 = 0,

〈Dk|P11ρ0P22|D`〉 =
1

ND

|α|
1 + α2

[ρ0]21,

〈Dk|PD⊥ρ0Pss|D`〉 = 0. (3.44)

We remark that we can also compute the matrix elements between acceptor levels, and those
between donor and acceptor levels. �

4 Conclusion

We consider a donor-acceptor (DA) system described by ND and NA sites at the degenerate
energies ED and EA. Each donor site is coupled equally to each acceptor site, and both the donor
and acceptor are coupled to a common noise, modeled by a thermal Bose field of vibrations.
We use the dynamical resonance theory to find the effective evolution of the DA system for
all times t ≥ 0, up to an error term which vanishes quadratically in the DA-reservoir coupling
(independently of time). Due to the symmetry of the Hamiltonian, the dynamics has many
stationary states. We exhibit them explicitly. We show that the DA final state (time t → ∞)
depends on its initial state (t = 0) and we find the initial-final state correspondence. The amount
of population transferred from the donor to the acceptor during the process depends on quantum
properties of the initial donor state: we demonstrate that if the initial population is shared
coherently by the donor sites then the transfer to the acceptor is high. For an incoherently
populated donor, the transfer is low. We examine the fluctuations in the donor populations
during the transfer process and show that they decrease with increasing system size ND. We also
discuss, in a qualitative way, what will change in our results when the symmetry (degeneracy)
of the Hamiltonian is lifted.
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