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Abstract

We consider a three-level quantum system interacting with a bosonic thermal
reservoir. Two energy levels of the system are nearly degenerate but well separated
from the third one. The system-reservoir interaction constant is larger than the
energy difference of the degenerate levels, but it is smaller than the separation
between the latter and the remaining level. We show that the quasi-degeneracy of
energy levels leads to the existence of a manifold of quasi-stationary states, and the
dynamics exhibits two characteristic time scales. On the first, shorter one, initial
states approach the quasi-stationary manifold. Then, on the much longer second
time scale, the final unique equilibrium is reached.

1 Introduction and main results

We consider a quantum system with three energy levels interacting with a bosonic heat
reservoir. One level, E0, is well separated from the other two, E ± σ/2, which are nearly
degenerate. Namely, the energy gap

∆ = E0 − E > 0

and the level splitting σ ≥ 0 satisfy σ << ∆. The three-level system is coupled to an
(infinitely extended) bosonic heat reservoir, at temperature T = 1/β > 0. The system-
bath interaction induces transitions between the level E0 and the two almost-degenerate
levels. It carries a (small) coupling constant λ. The full Hamiltonian is given by

H(σ, λ) = HS(σ) +HR + λG⊗ ϕ(g), (1.1)

∗Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL,
Canada A1C 5S7; merkli@mun.ca
†Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL,

Canada A1C 5S7. Current address: Department of Mathematics, Tianjin University of Technology,
Tianjin 300384, China; song haifeng@126.com
‡Theoretical Division, Los Alamos National Laboratory, and the New Mexico Consortium, 100 Entrada

Dr., Los Alamos, NM, 87544, USA; bgennady@newmexicoconsortium.org

1



where

HS(σ) =

 E0 0 0
0 E + σ/2 0
0 0 E − σ/2

 , (1.2)

HR =
∑
k

ωka
†
kak (1.3)

and

G =

 0 1 1
1 0 0
1 0 0

 , ϕ(g) =
∑
k

gka
†
k + h.c. (1.4)

The interaction is symmetric under permutation of the second and third levels, namely,
the first level interacts with both of them in the same way. This symmetry facilitates the
analysis, but is not required for it, see the remark after (2.24).

The three-level systems with quasi-degenerate two levels (so-called Λ-systems) natu-
rally appear in quantum optics when considering neutral atoms moving in laser fields [6]
and in bio-systems which describe the donor-acceptor exciton and electron transfer [13].
Recently the Λ-system was also implemented in superconducting nanocircuits [7]. In all
these situations, it is crucial to understand the influence of the thermal bath on the quan-
tum dynamics of the reduced density matrix. In particular, as we demonstrate in this
paper, there are two characteristic time-scales (not one) describing the approach of the
system to equilibrium.

We use the diagonal representation of our three-level system, denoting the orthonormal
basis diagonalizing HS(σ) by {ϕ1, ϕ2, ϕ3}. We are interested in the regime where the
system-reservoir interaction is much smaller than the gap ∆ but much larger than the
splitting σ,

0 ≤ σ << λ2 << ∆. (1.5)

We call the system with σ = 0 degenerate. The initial states are of the form

ωSR = ωS ⊗ ωR,β, (1.6)

where ωS(A) = Tr(ρSA) for any observable A of the 3-level system, and where ρS is an
arbitrary initial 3-level density matrix. The bath initial state is the thermal equilibrium of
the free bose gas in the thermodynamic limit (infinite volume). In this limit, the momenta
of single bosons take continuous values k ∈ R3. The bosonic creation and annihilation
operators a†k, ak (see (1.3)) become the infinite-volume versions a∗(k), a(k), satisfying the
usual commutation relation [a(k), a∗(l)] = δ(k− l). The infinite-volume equilibrium is the
quasi-free state determined by its two-point function

ωR,β(a∗(k)a(l)) =
δ(k − l)
eβ|k| − 1

,

in accordance with Planck’s law of black body radiation. This state is obtained as the
thermodynamic limit of the state given by the density matrix ρR ∝ e−βHR . We mention
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that ρR does not have a thermodynamic limit itself (as HR has continuous spectrum in
that limit), but given any (quasi-local) observable A of the bosons, the average Tr(ρRA)
does have a thermodynamic limit, which equals ωR,β(A). The state ωR,β can be identified
with a density matrix, however, the latter acts on a different Hilbert space than the
original one (“KMS construction”, see [3]). This construction is implicit in our analysis,
namely, we start off with an infinitely extended reservoir.

The resonance approach we follow (also known as complex spectral deformation, com-
plex scaling) requires certain regularity of the form factor g(k), k ∈ R3 (see (1.4)). The
precise (and somewhat technical) condition on g can be found in [15]. Here, we limit our-
selves to give an example of a family of form factors which are admissible: Expressed in
spherical coordinates (r,Σ) ∈ R3, g(r,Σ) = rpe−r

m
g1(Σ), where p = −1/2+n, n = 0, 1, . . .,

m = 1, 2 and g1(Σ) = eiφḡ1(Σ), where φ is an arbitrary phase.
The reduced dynamics of the 3-level system is obtained by tracing out the degrees of

freedom of the reservoir,

ρ(t) = TrR
(
e−itH(σ,λ)ρ(0)⊗ ρR eitH(σ,λ)

)
. (1.7)

In this notation, it is automatically assumed that the thermodynamic limit is performed
on the right side. It has been well known for a long time that the reduced dynamics
is difficult to analyze [4]. A mathematically rigorous way, based on quantum resonance
theory, has been developed in [15]. It uses the general framework established in [2, 8].
We are following this approach. In previous work the situation was considered where
the system-reservoir coupling strength λ is much smaller than all energy differences of
the uncoupled small system. Except in [16], where the opposite case is analyzed, namely
λ much larger than all system energy differences. In the present work, we consider the
regime (1.5) combining the two previous ones.

We are not aware of other literature on open quantum systems describing multiple
time-scales due to quasi-degeneracy of energy levels. Even so, the appearence of different
time-scales in open systems in different settings has been observed before. The paper [5]
examines the dynamics of a particle moving in widely separated potential wells and in-
teracting with an infinite reservoir. The spacing of the wells and the reservoir coupling
strength are related in a suitable way and two regimes appear, in which the weak cou-
pling dynamics of the particle shows different decay characteristics and in which the set
of invariant states are different. In [1], various master equations for the dynamics of a
nonlinear oscillator interacting with a reservoir are investigated. It is found (heuristi-
cally) that different generators yield more accurate descriptions of the reduced oscillator
dynamics for different time-scales. In particular, different generators should be used for
times shorter than, and longer than, the inverse of the system level spacing. In [11], two
spatially separated qubits interacting with a common thermal bath are considered. It
is shown that in certain parameter regimes, the lifetime of entanglement in the qubits,
created by the common bath, can be much larger than the single-qubit decoherence time.

We now summarize our results.
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1.1 Approximate dynamics

The resonance method yields an approximation Tt(ρ) of the reduced dynamics ρ(t). Its
strength lies in the following two facts: Firstly, the approximation is accurate to O(λ2),
uniformly in time t ≥ 0; this means that it differs from the true dynamics by a ‘remainder
term’ which depends on time, but which has an upper bound O(λ2) that is independent
of t ≥ 0 (in particular, it does not grow as t → ∞). Secondly, the derivation of the ap-
proximate dynamics and the estimates on the remainder (difference to the true dynamics)
are mathematically rigorous. More precisely, we show in Section 2.1 that there is a λ0 > 0
s.t. if |λ| < λ0, then

sup
t≥0
‖ρ(t)− Tt(ρ)‖ ≤ Cλ2, (1.8)

where C is independent of t, λ and σ. The approximate dynamics Tt(ρ) satisfies the group
property Tt+s = Tt ◦ Ts.

As (1.8) asserts, the approximate dynamics Tt(ρ) equals the true density matrix ρ(t)
only up to an error O(λ2). In particular, since σ << λ2, the approximate dynamics does
not “resolve” O(σ) effects in the density matrix at a fixed moment in time. However, over
longer time periods, the effects on the system caused by the level splitting σ accumulate.
They eventually become larger than O(λ2) and our theory is able to resolve these effects.
We find the time-scales over which significant (measurable) changes, larger than O(λ2),
happen. Then, by observing these measurable changes, one can reconstruct the value of
σ. We give concrete examples of this procedure in the illustrations in section 1.4 below.

As we show, the reduced dynamics Tt has an explicit form in terms of resonance
energies and resonance states. This allows us to carry out a detailed analysis of the
evolution, yielding the following results.

1.2 Properties of the degenerate system (σ = 0)

(A) Multiple stationary states. A system state ρ is called stationary or (Tt-)invariant if
Tt(ρ) = ρ for all t ≥ 0. We show that the manifold of all Tt-invariant states is

M0 =
{
µρS,β,0 + (1− µ)ρτ : µ ∈ [0, 1]

}
.

Here, ρS,β,0 ∝ e−βHS(0) is the equilibrium state of the system with σ = 0 and ρτ = |τ〉〈τ |,
where τ = 2−1/2(ϕ2 − ϕ3). Expressed in the energy basis {ϕj} of HS,

ρ ∈M0 ⇔ ρ =

 p 0 0
0 1

2
(1− p) α

0 α 1
2
(1− p)

 , (1.9)

where p ∈ [0, pmax] with pmax = (eβ∆ + 1)−1 and α = 1
2
((2eβ∆ + 1)p− 1).

(B) Final state dependence on initial state. Since M0 is not a single point, the final
state of the 3-level system, as t→∞, will depend on the initial condition. We show that,
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for any 3-level system density matrix ρ,

lim
t→∞

Tt(ρ) = ρ∞ =

 p∞ 0 0
0 1

2
(1− p∞) α∞

0 α∞
1
2
(1− p∞)

 , (1.10)

where

p∞ =
1 + [ρ]11 + 2Re[ρ]23

2(eβ∆ + 1)
and α∞ = 1

2
((2eβ∆ + 1)p∞ − 1). (1.11)

The density matrix is represented here in the energy basis {ϕj} of HS. Of course, ρ∞ ∈
M0. The convergence speed in (1.10) is exponential,

‖Tt(ρ)− ρ∞‖ ≤ Ce−γdegλ
2t, (1.12)

where C and γdeg > 0 (“degenerate”) are constants independent of λ and ‖ · ‖ is the trace
norm. The convergence rate γdeg depends on the spectral density of the reservoir,

J(ω) =
1

2
πω2

∫
S2

|g(ω,Σ)|2dΣ, ω ≥ 0, (1.13)

via the quantity J(∆) and

J̃(0) = lim
ω→0+

J(ω)

ω
. (1.14)

See also point 3. in the discussion after Proposition 2.1. Let T = 1/β be the temperature.
We obtain

γdeg =


2 min

{
J(∆)e−∆/T , T J̃(0)

}
∼ 2J(∆)e−∆/T for ∆ >> T

2T min
{J(∆)

∆
, J̃(0)

}
for ∆ << T

(1.15)

1.3 Properties of the non-degenerate system (σ > 0)

(A) Unique invariant state. We show that for σ > 0, the manifold of invariant states is a
single point

Mσ = {ρS,β,σ},

the equilibrium state ρS,β,σ ∝ e−βHS(σ). Moreover, for every initial state ρ,

‖Tt(ρ)− ρS,β,σ‖ ≤ Ce−γndtσ
2/λ2 , (1.16)

where C, γnd > 0 (“non-degenerate”) are constants independent of σ and λ. Again, the
convergence speed γ depends on J(∆). See point 3. in the discussion after Proposition
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2.1. We obtain the following expressions, where T = 1/β is the temperature

γnd =


1

2

J(∆)

ϑ2 e∆/T + J(∆)2 e−∆/T
for ∆ >> T ,

3

8

∆

T

J(∆)

ϑ2∆2/T 2 + J(∆)2
for ∆ << T .

(1.17)

Here,

ϑ =
1

2

∫
R3

1

1− e−|k|/T
|g(k)|2

|k|+ ∆
d3k − P.V.

1

2

∫
R3

1

e|k|/T − 1

|g(k)|2

|k| −∆
d3k.

The convergence to the final state, which does not depend on the initial one, takes
place at a speed ∝ σ2/λ2. The smaller the level spacing σ, the slower the convergence.
(And indeed, for σ = 0 the state ρS,β,σ is not approached at all, for general initial states.)

Comparing the rates γdeg and γnd we see that at low temperatures, both are exponen-
tially small, proportional to e−∆/T . At high temperatures, γdeg grows linearly in T , while
γnd decreases as 1/T .

Both γdeg and γnd depend on the reservoir correlation time. For example, for the form
factor (see (1.4) and before (1.7))

g(k) = A|k|−1/2e−
1
2
|k|/κ0 (1.18)

the reservoir correlation turns out to be τc = 1/κ0 and we obtain

J(∆) = 2π2A2∆e−∆τc and J̃(0) = 2π2A2. (1.19)

For more details and a derivation of (1.19), see Appendix A.

(B) Emergence of two time scales. We show that the dynamics Tt(ρ) has the expansion

Tt(ρ) = ρS,β,σ + eitε
(2)
0 (σ,λ)χ

(2)
0 +

7∑
`=1

eitε`(σ,λ)χ`, (1.20)

where the χ are operators on the 3-level system (not depending on t) and the ε are complex
numbers satisfying Imε ≥ 0. More precisely,

Im ε
(2)
0 ∝ σ2/λ2 +O(λ2(σ/λ)4)

Im ε` ∝ λ2 +O((σ/λ)2).

In the considered regime σ << λ2, we have Imε
(2)
0 << Imε`. The terms in (1.20) pro-

portional to χ` converge to zero exponentially quickly, on a time scale t1 ∼ 1/λ2. The

contribution χ
(2)
0 survives on a much longer time scale t2 ∼ λ2/σ2. In the limit t → ∞,

Tt(ρ) becomes the equilibrium state ρS,β,σ (and (1.16) follows directly from (1.20)).
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Taking σ → 0 in (1.20) gives Tt(ρ) = ρS,β,0 + χ
(2)
0 +

∑7
`=1 eitε`(0,λ)χ`. For t larger than

∼ λ−2, all the exponentials in the last sum become negligible. Hence on a time scale
O(1/λ2) < t < O(λ2/σ2), the state Tt(ρ) is approximated by ρS,β,0 + χ

(2)
0 . One verifies

directly (using the explicit formulas in Section 2.4) that ρS,β,0 +χ
(2)
0 ∈M0 is the point of

M0 given in (1.9), associated to the initial condition at hand.

Summary. This analysis paints the following picture. For σ << λ2, any initial system
state approaches the quasi-stationary manifold M0 on a rapid time scale t1 ∼ 1/λ2. It
sojourns in a vicinity (of size O(σ)) of the point ofM0 given by (1.9) (which depends on
the initial state) and finally, after t2 ∼ λ2/σ2 >> t1, it decays to the unique equilibrium
ρS,β,σ.

In the ‘usual’ situation when λ2 is smaller than all energy differences of the system
alone, there is a single time scale on which the system approaches the equilibrium. This
time scale is of order 1/λ2. In our situation, the almost-degeneracy of two of the system
levels generates the new time scale ∼ σ2/λ2. We can view this effect as a perturbation of
the manifold of stationary states M0. As σ > 0, this manifold is unstable and collapses
to a single point ρS,β,σ.

Remark. The rotating wave approximation and the Born-Markov approximation
cannot be used in this problem, because the energy splitting σ is much smaller than
the system-reservoir coupling constant λ2. Our resonance approach is also not analogous
to the Redfield equation. Indeed, the derivation of the Redfield equation is based on
perturbation theory in λ and as a result it can only yield characteristic decay rates ∝
λ2S(σ), where S(σ) encodes the reservoir spectral density (and does not depend on λ).
However, in the quasi-degenerate case we consider, some directions of decay have a rate
∝ σ2/λ2. This functional dependence is incompatible with the Redfield approach. Rather,
the emergence of rates ∝ σ2/λ2 is explained as follows: our “unperturbed system” is
already interacting with the reseroir (λ 6= 0), having (complex) energies ε ∝ λ2. Then we
switch on the perturbation σ and obtain (usual second order) energy corrections ∝ σ2

ε−ε′ ∝
σ2/λ2.

1.4 Illustrations

1. Donor-acceptor model. We view the 3-level system as a donor-acceptor system,
describing, for instance, the electron transfer in chemical reactions [10, 13, 18]. The
level E0 is the donor level and E ± σ/2 are almost-degenerate acceptor levels. Sup-
pose the initial state is

ρ0 = pD(0)|ϕ1〉〈ϕ1|+ p2|ϕ2〉〈ϕ2|+ p3|ϕ3〉〈ϕ3|,

with initial populations pD(0), p2 and p3 of the donor and acceptor levels 2 and 3,
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respectively. We analyze the donor probability (c.f. (1.8) and (1.20))

pD(t) = [ρ(t)]11 = [Tt(ρ0)]11 +O(λ2)

= [ρS,β,σ]11 + eitε
(2)
0 [χ

(2)
0 ]11 +

7∑
`=1

eitε` [χ`]11 +O(λ2).

The initial condition is pD(0) ∈ [0, 1]. For the degenerate system, σ = 0, the final
state is given by (1.10), hence

pD(∞) =
1 + pD(0)

2(1 + eβ∆)
+O(λ2), for σ = 0.

The final donor value depends on the initial donor value for the degenerate system.
In particular, if pD(0) = 1, then

pD(∞) = (1 + eβ∆)−1 +O(λ2), for σ = 0. (1.21)

This coincides with the value obtained in [13] for the multi-level acceptor model (see
formula (1.15) in [13] with NA = 2, V = 0, which gives the acceptor probability pA
for a single acceptor level – the relation to our pD being pD = 1− 2pA).

On the contrary, if the acceptor levels are however slightly non-degenerate (any
σ > 0), then the final donor probability is, independently of the initial condition,
given by

pD(∞) = [ρS,β,σ]11 +O(λ2)

= (1 + eβ(∆+σ/2) + eβ(∆−σ/2))−1 +O(λ2)

= (1 + 2eβ∆)−1 +O(λ2), for σ > 0. (1.22)

To pass from the second last step to the last one, we use the fact that σ << λ2. The
final donor probability is reached after a very long time ∝ λ2/σ2.

Note that the final donor probabilities (1.21) for σ = 0 and (1.22) for σ > 0 do not
coincide.

2. Decoherence. Consider σ > 0. As explained above, on the time-scale t1 ∝ 1/λ2,
any initial state ρ0 of the system approaches the associated quasi-stationary state

ρqstat =

 p 0 0
0 1

2
(1− p) α

0 α 1
2
(1− p)

 , (1.23)

where

p =
1 + [ρ0]11 + 2Re[ρ0]23

2(eβ∆ + 1)
and α = 1

2
((2eβ∆ + 1)p− 1). (1.24)
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More precisely, ρt−ρqstat = O(λ2), for t ≈ t1. Thus (1.23) tells us that after times t ≥
t1, the coherences (density matrix elements) in ρt between the two energy subspaces
of HS associated to the energies E0 (non-degenerate) and E (doubly degenerate),
are negligibly small (O(λ2)). However, the coherence between the two degenerate
energy levels, α, is sizeable. Even if these two levels are initially uncorrelated,
[ρ0]2,3 = 0, after time t1 they acquire coherence (nonzero matrix element) of the size
α + O(λ2), with α given in (1.24). In particular, starting with [ρ0]2,3 = 0, we have
|[ρt]2,3| ≥ 1

4
(eβ∆ + 1)−1 +O(λ2) for t ∼ t1.

The coherence between the nearly degenerate energy levels is lost (is of O(λ2)) after
time t2, when the final (Gibbs) equilibrium state is reached.

3. Determining σ from observation. The basic idea is to measure the time until a
property of the system changes significantly. The corresponding time scale is linked
to the value of σ. Concretely, suppose the initial 3-level system has density matrix

ρ(0) = |1〉〈1|.

The final state will be
ρ(∞) = ρS,β,σ +O(λ2).

Consider the population of level one,

p(t) = [ρ(t)]1,1, with p(0) = 1 and p(∞) =
1

1 + 2eβ∆
+O(λ2).

We use expression (1.20) to obtain

Tr
( 7∑
`=1

eitε`(σ,λ)χ`(|ϕ1〉〈ϕ1|)
)

= O(λ2) for times t >> 1/λ2.

This is so since all exponentials in the sum decay with rate 1/λ2. Using the formulas

for ε
(2)
0 and χ

(2)
0 given in Proposition 2.1 and Section 2.4.4, we obtain from (1.20)

that

p(t) =
1

1 + 2eβ∆
+

e−γ
σ2

λ2
t

2eβ∆ + 3 + e−β∆
+O(λ2), t >> 1/λ2. (1.25)

Here, γ > 0 can be read off the expression for ε
(2)
0 given in Proposition 2.1.

In (1.25), the quantity decaying in time is large, O(λ0), for times in the window

1/λ2 << t << λ2/σ2.

Then by measuring the population p(t) within this time window one obtains a
measured (experimental) value for the decay rate τmeas. We have 1/τmeas = γσ2/λ2.
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One may also relate the value of λ to an experimental measurement in the same way.
Initially, we have p(0) = 1. Then, observing how quickly the population decreases
to its quasi-stationary value

pqstat =
1

1 + 2eβ∆
+

1

2eβ∆ + 3 + e−β∆
,

namely the value of p(t), (1.25), where the exponential has not decayed yet signifi-
cantly, yields a mesured decay time which is proportional to 1/λ2.

4. Photosynthetic Light Harvesting Complexes. Our model can be used to describe
biological light harvesting complexes (LHC) of plants and algae [18]. In this setting,
the donor is represented by a chlorophyll B molecule (ChlB), having first excited
energy E0. The acceptor is quasi-degenerate and consists of two chlorophylls A
(ChlA) with slightly different excited energies E ± σ/2, brought about by slightly
different interactions with the protein environment. The donor and the two accep-
tors are all spatially separated from each other and so we may neglect any direct
interaction. They interact only through the protein environment. The resulting
coupling between donor and acceptor is relatively weak, E − E0 >> λ, while the
one between the acceptor and the environment is relatively strong, λ >> σ. This
situation often occurs in LHCs.

2 Detailed description and proofs

2.1 Reduced 3-level system dynamics

The reduced density matrix ρS(t) of the 3-level system is defined by (compare with (1.7))

Tr(ρS(t)A) = ωSR
(
eH (σ,λ)(A⊗ 1lR)e−itH(σ,λ)

)
, (2.1)

valid for all A ∈ B(C3). The starting point of the analysis is the dynamics of the uncoupled
and degenerate system, σ = λ = 0. Then the 3-level system evolves independently of the
reservoir, according to the Liouville equation

d
dt
ρS(t) = −i[HS(0), ρS(t)].

The eigenvalues of the Liouville operator LS(0) = [HS(0), · ], acting on (density) matrices,
are the differences of all pairs of eigenvalues of HS(0). Namely, e0 = 0 which has degen-
eracy s0 = 5 and e±1 = ±∆ each having degeneracy s±1 = 2.1 As the degeneracy is lifted
and the interaction is switched on (σ, λ 6= 0) the reduced dynamics becomes complicated.

1For instance, the eigenvectors associated to the null space of LS(0) are |ϕj〉〈ϕj |, j = 1, 2, 3 and
|ϕj〉〈ϕk|, (j, k) = (2, 3), (3, 2).
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It can be expressed using complex (resonance) energies ε̃
(s)
j (σ, λ), where j = −1, 0, 1 and

s = 1, . . . , sj. The resonance energies bifurcate out of the unperturbed values,

ε̃
(s)
j = ε̃

(s)
j (σ, λ) = ej + f

(s)
j (σ, λ), (2.2)

with f
(s)
j (0, 0) = 0. They are not analytic functions of (σ, λ) at the origin of C2. However,

if one variable is held fixed away from zero, say λ 6= 0, then σ 7→ f
(s)
j (σ, λ) is analytic at

σ = 0. The same holds if the roles of λ and σ are interchanged. We have (see Sections 4
and 6 of [15])

Tr(ρS(t)A) =
∑

j=−1,0,1

sj∑
s=1

eitε̃
(s)
j W

(s)
j (A) +O(λ2e−αt), (2.3)

valid for any A ∈ B(C3) and all t ≥ 0. Here, W
(s)
j are linear functionals on observables

A ∈ B(C3) and the remainder term is uniform in t ≥ 0, meaning that |O(λ2e−αt)| ≤
Cλ2e−αt for a constant C independent of λ, t. We can recover the density matrix elements
of ρS(t) by choosing convenient operators A in (2.3),

[ρS(t)]k,l ≡ 〈ϕk, ρS(t)ϕl〉 = Tr
(
ρS(t)|ϕl〉〈ϕk|

)
. (2.4)

The construction of the ε
(s)
j and W

(s)
j are linked to the so-called level shift operators.

Perturbation theory and level shift operators. It is often convenient to adopt
the Liouville representation of the (system) density matrix, see for instance the book [17].
In this representation, the density matrix ρS ∈ B(C3) is given by a normalized vector
ψS ∈ C3 ⊗ C3, such that

Tr(ρSA) = 〈ψS, (A⊗ 1lS)ψS〉 .

Here, 1lS = 1lC3 . The original system Hilbert space (C3) is thus doubled to obtain the
Liouville Hilbert space C3⊗C3, but in the latter the system density matrix is simply given
by a normalized vector. Similarly, one has a Liouville representation for the reservoir, and
one can describe the system-reservoir dynamics on the total system-reservoir Liouville
space. We give more detail about this in Section 2.4. Here we explain how the ε

(s)
j and

the W
(s)
j are constructed.

The system Liouville operator acts on the system Liouville space C3⊗C3 as LS(σ) =
HS(σ)⊗1lS−1lS⊗HS(σ). The spectral subspaces of LS(0) have dimension five (eigenvalue
zero) and dimension two (for each eigenvalue ±∆). On these eigenspaces, labelled by
j = 0,±1, act the level shift operators Λj, which can be written in diagonal form as

Λj =

sj∑
s=1

ε
(s)
j P

(s)
j , (2.5)

where ε
(s)
j = ε

(s)
j (σ, λ) are the eigenvalues of Λj, satisfying Im ε

(s)
j ≥ 0, and P

(s)
j are the

spectral rank-one eigenprojections, which are generally not orthogonal. The level shift
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operators (2.5) describe the corrections to the eigenvalues of LS(0) under the perturbation
σ and λ.

The eigenvalues of the level shift operators are related to ε̃
(s)
j , (2.2), by

ε̃
(s)
j = ε

(s)
j +O(λ2(|λ|+ σ)). (2.6)

The functionals W
(s)
j are related to the eigenprojections by

W
(s)
j (A) = χ

(s)
j (A) +O(λ2),

χ̃
(s)
j (A) =

〈
ψS, BP

(s)
j (A⊗ 1lS)ψref

〉
. (2.7)

The functionals χ̃
(s)
j equal, up to a small modification explained in Section 2.1.1, the χ

(s)
j

in the expansion (1.20). Note that χ̃
(s)
j depends on the initial state. In the expression

on the right side of (2.7), we have used the Liouville representation of the 3-level system.
The reference vector ψref in (2.7) is the trace state of the 3-level system, given by

ψref = 1√
3

3∑
j=1

ϕj ⊗ ϕj. (2.8)

The operator B in (2.7) is of the form B = 1lS ⊗ b, with b ∈ B(C3), satisfying

Bψref = ψS. (2.9)

Given any ψS, such a B exists and is unique – this is known as a property of ‘cyclicity
and separability’ of the reference state ψref , see e.g. [3]. For instance, if the initial state
of the 3-level system is ρS = |ϕ1〉〈ϕ1|, then ψS = ϕ1 ⊗ ϕ1 and b =

√
3|ϕ1〉〈ϕ1|.

2.1.1 The approximate dynamics

Combining (2.3), (2.6) and (2.7) we obtain

ρS(t) = T̃t(ρS) +O(λ2), (2.10)

where the remainder is independent of t ≥ 0 and σ, and where T̃t is defined by the relation

Tr(T̃t(ρ)A) :=
∑

j=−1,0,1

sj∑
s=1

eitε
(s)
j χ̃

(s)
j (A), (2.11)

valid for all 3-level system observables A and all 3-level system density matrices ρ. We
now refine this dynamics to obtain the correct final state. As one checks directly (see e.g.
Section 2.4.4),

χ̃
(1)
0 (A) = Tr(ρS,β,0A)

12



is the system equilibrium state with σ = 0. The limit t→∞ of T̃t(ρ), (2.11), is precisely

χ̃
(1)
0 (A) (for σ > 0, all exponentials but one have strictly positive imaginary part, see

Proposition 2.1 below – note also that this means that ρS,β,0 is a stationary state, a fact
one can establish directly using the resonance data, see Subsections 2.4.5 and 2.4.6). On
the other hand, the true asymptotic state, as t → ∞ of the system is the reduction of
the coupled system-reservoir equilibrium state, reduced to S alone (partial trace). That

state is ρS,β,σ + O(λ2). Therefore, we will now improve the approximate dynamics T̃t to
a slightly modified one, Tt, having the property that its final state is ρS,β,σ for σ ≥ 0, not
ρS,β,0. To do so, we note that

ρS,β,σ = XσρS,β,0Xσ,

where

Xσ =

√
ZS,β,0
ZS,β,σ

(
|ϕ1〉〈ϕ1|+ e−βσ/4|ϕ2〉〈ϕ2|+ eβσ/4|ϕ3〉〈ϕ3|

)
,

with ZS,β,σ = TrρS,β,σ the system partition function. We now set

χ
(s)
j (A) := χ̃

(s)
j (XσAXσ) (2.12)

and define the improved approximate dynamics Tt by

Tr(Tt(ρ)A) =
∑

j=−1,0,1

sj∑
s=1

eitε
(s)
j χ

(s)
j (A). (2.13)

Since Xσ = 1l +O(σ) and σ << λ2, we have from (2.10) and (2.12) that still

ρS(t) = Tt(ρS) +O(λ2), (2.14)

uniformly in t ≥ 0. This is the statement (1.8). The final state (σ > 0) of Tt is

χ
(1)
0 (A) = χ̃

(1)
0 (XσAXσ) = Tr(ρS,β,0XσAXσ) = Tr(ρS,β,σA). (2.15)

Setting

U(t) =
∑

j=−1,0,1

sj∑
s=1

eitε
(s)
j P

(s)
j , (2.16)

where the P
(s)
j are the spectral projections of the level shift operator, (2.5), and taking

into account (2.7) and (2.12), we get

Tr
(
Tt(ρ)A

)
= 〈B∗ψS, U(t)(XσAXσ ⊗ 1lS)ψref〉 . (2.17)

Since ψref is cyclic, we have that for any t ≥ 0 and any operator A, there exists a unique
operator αt(A) satisfying

U(t)(A⊗ 1lS)ψref = (αt(A)⊗ 1lS)ψref . (2.18)

13



This defines the Heisenberg evolution t 7→ αt(A). Since the P
(s)
j are spectral projections,

they satisfy P
(s)
j P

(s′)
j′ = δj,j′δs,s′P

(s)
j , from which it follows that U(t + s) = U(t)U(s),

which implies that αt+s(A) = αt(αs(A)). It follows from (2.17), (2.18) and the fact that
B = 1lS ⊗ b commutes with αt(A)⊗ 1lS and Bψref = ψ0 that

Tr
(
Tt(ρ)A

)
= Tr

(
ραt(XσAXσ)

)
. (2.19)

We derive from (2.19) that the map ρ 7→ Tt(ρ) is linear: for all t ≥ 0, A ∈ B(C3), all
density matrices ρ, ρ′ and all z, z′ ∈ C,

Tr
(
Tt(zρ+ z′ρ′)A

)
= Tr

(
(zρ+ z′ρ′)αt(XσAXσ)

)
= zTr

(
ραt(XσAXσ)

)
+ z′Tr

(
ρ′αt(XσAXσ)

)
= zTr

(
Tt(ρ)A

)
+ z′Tr

(
Tt(ρ

′)A
)

= Tr
(
(zTt(ρ) + z′Tt(ρ

′))A
)
. (2.20)

The following result analyzes the resonance energies ε
(s)
j appearing in U(t). Recall that

the square integrable function g(k) = g(ω,Σ) (spherical coordinates) is the form factor
(1.1). Recall the definition of the spectral density, (1.13) and (1.14). Define

δ = 2
J(∆)

eβ∆ − 1
≥ 0 (2.21)

ϑ =
1

2

∫
R3

(1 + µβ(k))
|g(k)|2

|k|+ ∆
d3k − P.V.

1

2

∫
R3

µβ(k)
|g(k)|2

|k| −∆
d3k ∈ R (2.22)

where µβ(k) = (eβ|k| − 1)−1.

Proposition 2.1 (Resonance energies) Assume that 0 < σ << λ2 << ∆. The reso-
nances bifurcating out of the origin are given by

ε
(1)
0 = 0

ε
(2)
0 = iδ

(2 + e−β∆)

2(1 + e−β∆)(4ϑ2 + δ2)

σ2

λ2
+O(λ2(σ/λ)4)

ε
(3)
0 = 2iδλ2(1 + eβ∆) +O((σ/λ)2)

ε
(4)
0 = iδλ2 + 2λ2ϑ+O((σ/λ)2)

ε
(5)
0 = iδλ2 − 2λ2ϑ+O((σ/λ)2).

The resonances bifurcating out of the unperturbed energy ∆ are

ε
(1)
1 = ∆− λ2P.V.

∫
R3

|g(k)|2

|k|
d3k + 2iλ2 J̃(0)

β
+O((σ/λ)2)

ε
(2)
1 = ∆ + 4iλ2 J̃(0)

β
+O((σ/λ)2).

Finally, the resonances ε
(1)
−1 and ε

(2)
−1, bifurcating out of −∆, are obtained from the expres-

sions for ε
(1)
1 and ε

(2)
1 by replacing ∆ with −∆.
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Discussion. 1. More precisely, by 0 < σ << λ2 << ∆ in the lemma, we mean the
following. There is a constant λ0 (much smaller than

√
∆), such that for any λ with

|λ| < λ0 there is another constant σ0 (depending on λ), such that the result holds for all
0 < σ < σ0.

2. One resonance, ε
(1)
0 , is always zero and ε

(2)
0 is very close to the origin (σ small).

The other three resonances bifurcating out of the origin, ε
(j)
0 , j = 3, 4, 5, are at a distance

O(λ2) from the origin. The resonances bifurcating out of ±∆ have an imaginary part
O(λ2) in the upper half plane.

3. The convergence speeds γdeg and γnd in formulas (1.12) and (1.16) are obtained as
follows. For σ = 0 we have

γdeg = min{Imε(s)
j , (j, s) 6= (0, 1), (0, 2)} = min{J(∆)/(eβ∆ − 1), J̃(0)/β}.

For σ > 0 we have γnd = Imε
(2)
0 .

2.2 The degenerate system, σ = 0

A state ω of the 3-level system and reservoir together is said to be stationary (for the
degenerate Hamiltonian H = H(σ = 0, λ)) if ω(eitHAe−itH) = ω(A) for all times t and all
system-reservoir observables A. The degenerate system has two stationary states. One
is the joint equilibrium state, in which the 3-level system in entangled with the reservoir
due to the interaction. The other stationary state is the product state

ωSR,0 = 〈τ, · τ〉 ⊗ ωR,β, (2.23)

where ωR,β is the reservoir equilibrium and

τ = 2−1/2(ϕ2 − ϕ3). (2.24)

It is readily seen that HS(0)τ = Eτ and Gτ = 0, from which stationarity of ωSR,0 follows.
Remarks. 1. We note that even if G was not symmetric in the levels two and three,

i.e., if G was of the form

Gγ =

 0 1 γ
1 0 0
γ̄ 0 0

 (2.25)

for some γ ∈ C, γ 6= 1, the degenerate system would still have two stationary states. One
is again the coupled equilibrium and the other one is of the form (2.23) with τ replaced
by τγ ∝ γϕ2 − ϕ3.

2. One may consider models where the two (quasi-)degenerate levels are coupled by
a matrix element v in the coupling operator G or Gγ. (This means, in the matrix (2.25),
replace the zeroes by v and v̄ in the (2, 3) and (3, 2) entries, respectively.) Equivalently,
one could introduce a direct matrix element ṽ between the two (quasi-)degenerate levels in
the Hamiltonian (1.1). In the regime σ, ṽ << λ2 << ∆, the system dynamics still exhibits
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two time scales, because there are still two almost degenerate levels, lying far from the
third one (relative to the size of λ). For ṽ >> λ2, all three system energy levels are
well separated and we are in the usual regime where only one decay time scale (∝ 1/λ2)
appears.

As a consequence of the non-uniqueness of the stationary state, the long-time be-
haviour of the system depends on the initial condition.

2.2.1 Final states and stationary states of the 3-level system

Let ρ be an (initial) state of the 3-level system. According to (2.13) we have

lim
t→∞

Tr
(
Tt(ρ)A

)
= χ

(1)
0 (A) + χ

(2)
0 (A) (2.26)

for any observable A. Indeed, all ε
(s)
j with j = ±1 and with j = 0 and s ≥ 3 have strinctly

positive imaginary part (see Proposition 2.1), so that the corresponding exponentials

decay at t → ∞. The functionals w
(1)
0 , w

(2)
0 can be expresed via the projections onto

the resonance state associated to the resonance energies ε
(1)
0 = ε

(2)
0 = 0 (see (2.44)). We

obtain the following result.

Proposition 2.2 (Final state) Consider σ = 0 (degenerate system). Let ρ0 be an ar-
bitrary 3-level density matrix . Then

lim
t→∞

Tt(ρ0) = ρ∞ =

 p∞ 0 0
0 1

2
(1− p∞) α∞

0 α∞
1
2
(1− p∞)

 , (2.27)

where

p∞ =
1 + [ρ0]11 + 2Re[ρ0]23

2(eβ∆ + 1)
and α∞ = 1

2
((2eβ∆ + 1)p∞ − 1). (2.28)

(Here, [ρ0]ij is the matrix element of ρ0, see (2.4)). The speed of convergence is exponen-
tial,

‖Tt(ρ0)− ρ∞‖ ≤ Ce−cλ
2t, (2.29)

where C and c > 0 are constants independent of λ and ‖ · ‖ is the trace norm.

Discussion. 1. The final density matrix depends on the parameter p∞, which
involves the initial density matrix through the matrix elements [ρ]11 and Re[ρ]23 only.

2. There are no coherences between the non-degenerate and the two degenerate levels
in the final density matrix (block diagonal). The final state is symmetric with respect to
interchanging levels two and three.

3. The convergence speed is determined by the imaginary part of the non-zero reso-
nances, which is ∝ λ2.

We give a proof of Proposition 2.2 in Section 2.4.5

Suppose that ρ is stationary for Tt, i.e., that Tt(ρ) = ρ for all t ≥ 0. Then clearly ρ
has to be of the form ρ∞ as in (2.27). The converse is true too, as shows the next result.
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Proposition 2.3 (Invariant states) Consider σ = 0 (degenerate system). A density
matrix ρ of the 3-level system satisfies Tt(ρ) = ρ for all t ≥ 0 if and only if it has the
form

ρ =

 p 0 0
0 1

2
(1− p) α

0 α 1
2
(1− p)

 , (2.30)

where p ∈ [0, pmax] and α = 1
2
((2eβ∆ + 1)p− 1) and pmax = (eβ∆ + 1)−1.

To see why Proposition 2.3 holds, we first note that both density matrices

ρS,β,0 =
e−βHS(0)

Tre−βHS(0)
and ρτ = |τ〉〈τ |

are stationary for Tt, namely

Tt(ρS,β,0) = ρS,β,0, Tt(ρτ ) = ρτ . (2.31)

We show (2.31) directly in Section 2.4.6. Heuristically, stationarity of ρτ follows from the
fact that the product state (2.23) is stationary for the total dynamics. The Gibbs state
ρS,β,0 is stationary since it is the reduction of the full system-reservoir equilibrium state,
up to corrections of O(λ2), and the dynamics Tt is an approximation of the true 3-level
system dynamics which is accurate to O(λ2), uniformly for all times t ≥ 0.

Since both ρS,β,0 and ρτ are stationary, the family

ρ(µ) = µρS,β,0 + (1− µ)ρτ , µ ∈ [0, 1], (2.32)

has to be stationary as well. This is so since ρ 7→ Tt(ρ) is linear, see (2.20).
Written in the basis ϕj, j = 1, 2, 3, the density matrix ρ(µ), (2.32), has exactly the

form (2.30), with p = µ(1 + 2eβ∆)−1. So ρ, (2.30), is Tt-invariant. This shows Proposition
2.3.

2.3 The non-degenerate system, σ > 0

As the level-splitting is lifted, for σ > 0, the state ωRS,0, (2.23), is not stationary any
more. However, the joint equilibrium is still stationary, of course.

Proposition 2.4 (Unique final state) Suppose the spectral density satisfies J(∆) > 0

and J̃(0) > 0, see (1.13) and (1.14). Then, for σ > 0, every initial 3-level density matrix
ρ converges to the Gibbs state,

lim
t→∞

Tt(ρ) = ρS,β,σ =
e−βHS(σ)

Tre−βHS(σ)
.

The convergence is exponential,

‖Tt(ρ)− ρS,β,σ‖ ≤ Ce−ctσ
2/λ2 , (2.33)

where C, c > 0 are constants independent of σ and λ.
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Discussion. 1. The positivity condition on the spectral density, J(∆), J̃(0) >
0, ensures that the levels are coupled effectively to the reservoir. They imply that all
resonance energies (except zero) have strictly positive imaginary part, see Proposition
2.1.

2. The equilibrium is approached with a convergence speed proportional to the imag-
inary part of the resonance having the smallest nonzero imaginary part, ε

(2)
0 , which is

∝ σ2/λ2 (see Proposition 2.1). As σ → 0, the right side of (2.33) does not decay to zero
as t → ∞. This reflects the fact that there are invariant states other than ρS,β,0 in the
degenerate case.

3. The time scale t ∼ t2 = λ2/σ2 (c.f. (2.33)) is much larger than t ∼ t1 = 1/λ2 (c.f.
(2.29)), in our parameter regime σ << λ2.

2.4 Resonance data and proofs of Propositions 2.1 and 2.2

2.4.1 The Liouville space

In the thermodynamic limit, the equilibrium state of the bosonic reservoir is represented
as a vector in a new Hilbert space, called the Liouville- or GNS-Hilbert space. This setup
has been discussed in [15]. We only outline the parts that are needed for us to define the
level shift operators, whose eigenvalues and eigenvectors encode the reduced dynamics as
in Section 2.1.

The Hilbert space is
H = C3 ⊗ C3 ⊗F ,

where C3 ⊗ C3 is the Liouville space of the 3-level system and

F =
⊕
n≥0

L2
symm

(
(R× S2)n, (du× dΣ)n

)
is the reservoir space, the symmetric Fock space over the single-particle space L2(R×S2).
On H, the Liouville operator is defined as

L(σ, λ) = LS(σ) + LR + λI,

where LS(σ) = HS(σ)⊗ 1lS − 1lS ⊗HS(σ) and LR = dΓ(u) is the second quantization of
the multiplication operator by u, acting on F . The interaction is given by I = G⊗ 1lS ⊗
ϕ(gβ) − 1lS ⊗ G ⊗ JRe−βLR/2ϕ(gβ)JRe−βLR/2. Here, ϕ(gβ) is the field operator acting on
F , smoothed out with the positive temperature form factor

gβ(u,Σ) :=

√
u

1− e−βu
|u|1/2

{
g(u,Σ) if u ≥ 0,
−g(−u,Σ) if u < 0.

On the right side, g ∈ L2(R3) is represented in spherical coordinates (u,Σ) ∈ R+ × S2.
The operators JR and ∆R in the definition of I above are the modular conjugation. Its
action is given by JRΨ(u1,Σ1, . . . , un,Σn) = Ψ(−u1,Σ1, . . . ,−un,Σn), linearly extended
to all of F .
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2.4.2 The level shift operators

Let e ∈ {0,±∆} be an eigenvalue of LS(0). We denote by Pe the projection χLS=e ⊗ PΩ,
where PΩ = |Ω〉〈Ω| is the projection onto the vacuum Ω ∈ F and χLS=e is the spectral
projection of LS onto the eigenspace associated with e. Note that dimP0 = 5 while
dimP±∆ = 2. We define the level shift operators

Λe = Pe

(
L(σ, λ)− L(σ, λ)P e(L(0, 0)− e+ i0+)−1P eL(σ, λ)

)
Pe, (2.34)

where P e = 1l− Pe and L(0, 0) = P eL(0, 0)P e �RanP e
.

The level shift operator Λ0. We set

ν =
1√
2

 0
1
1

 and τ =
1√
2

 0
1
−1

 .
Then

{Ψ1 = ϕ11,Ψ2 = ν ⊗ ν,Ψ3 = τ ⊗ τ,Ψ4 =
1√
2

(ϕ23 − ϕ32),Ψ5 =
1√
2

(ϕ22 − ϕ33)} (2.35)

is an orthonormal basis of RanP0, and Λ0 is represented as a 5 × 5 matrix in this basis.
Note that Λ0 = B + A, where

B =P0L(σ, λ)P0

A =− P0L(σ, λ)P 0(L(0, 0) + i0+)−1P 0L(σ, λ)P0.
(2.36)

The matrix B is easily found to be

B = σ


0 0 0 0 0
0 0 0 1√

2
0

0 0 0 − 1√
2

0

0 1√
2
− 1√

2
0 0

0 0 0 0 0

 . (2.37)

To obtain the matrix elements of A, we first calculate

AΨ1 =− 2λ2Ψ1{〈ϕ(LR −∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR + ∆ + i0+)−1ϕ〉}
+ 2λ2Ψ2{〈ϕ(LR + ∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR −∆ + i0+)−1ϕ〉},

AΨ2 =2λ2Ψ1{〈ϕ(LR −∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR + ∆ + i0+)−1ϕ〉}
− 2λ2Ψ2{〈ϕ(LR + ∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR −∆ + i0+)−1ϕ〉}

=− AΨ1,

AΨ3 =0,

AΨ4 =− λ2Ψ4{〈ϕ(LR + ∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR −∆ + i0+)−1ϕ〉}
+ λ2Ψ5{〈ϕ(LR + ∆ + i0+)−1ϕ〉 − 〈ϕ̃(LR −∆ + i0+)−1ϕ〉}

AΨ5 =− λ2Ψ5{〈ϕ(LR + ∆ + i0+)−1ϕ〉+ 〈ϕ̃(LR −∆ + i0+)−1ϕ〉}
+ λ2Ψ4{〈ϕ(LR + ∆ + i0+)−1ϕ〉 − 〈ϕ̃(LR −∆ + i0+)−1ϕ〉}

(2.38)
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Here 〈·〉 = 〈Ω, ·Ω〉. Let

ξ =〈ϕ(LR −∆ + i0+)−1ϕ〉, ξ− = 〈ϕ(LR + ∆ + i0+)−1ϕ〉,
ξ̃ =〈ϕ̃(LR −∆ + i0+)−1ϕ〉, ξ̃− = 〈ϕ̃(LR + ∆ + i0+)−1ϕ〉,

(2.39)

then we have

AΨ1 =− 2λ2Ψ1(ξ + ξ̃−) + 2λ2Ψ2(ξ− + ξ̃)

AΨ2 = + 2λ2Ψ1(ξ + ξ̃−)− 2λ2Ψ2(ξ− + ξ̃)

AΨ3 =0

AΨ4 =− λ2Ψ4(ξ− + ξ̃)− λ2Ψ5(ξ̃ − ξ−)

AΨ5 =− λ2Ψ4(ξ̃ − ξ−)− λ2Ψ5(ξ̃ + ξ−).

(2.40)

It follows from (2.21) and (2.22) that

ξ̃ + ξ− =− 2i lim
ε→0+
〈ϕ ε

(LR + ∆)2 + ε2
ϕ〉 = −iδ

ξ + ξ̃− =− 2i lim
ε→0+
〈ϕ ε

(LR −∆)2 + ε2
ϕ〉 = −ieβ∆δ

ξ− − ξ̃ =2ϑ.

(2.41)

So the matrix representation of the operator A in the basis (2.35) is

A =


i2eβ∆δλ2 −i2eβ∆δλ2 0 0 0
−i2δλ2 i2δλ2 0 0 0

0 0 0 0 0
0 0 0 iδλ2 2λ2ϑ
0 0 0 2λ2ϑ iδλ2

 . (2.42)

This and equation (2.37) give the representation of level shift operator as Λ0 = B + A.

The level shift operators Λ±∆. In the basis {ϕ12, ϕ13} of RanP∆, we have Λ∆ =
B + A with

B =

(
∆− σ

2
0

0 ∆ + σ
2

)
and

Aϕ12 =− λ2(2〈ϕ(LR + i0+)−1ϕ〉 − 〈ϕ(LR + i0+)−1ϕ〉)ϕ12 + λ2〈ϕ(LR + i0+)−1ϕ〉ϕ13

Aϕ13 =− λ2(2〈ϕ(LR + i0+)−1ϕ〉 − 〈ϕ(LR + i0+)−1ϕ〉)ϕ13 + λ2〈ϕ(LR + i0+)−1ϕ〉ϕ12.

So

Λ∆ = ∆− 2λ2η + λ2η

(
1 1
1 1

)
+ σ

(
−1

2
0

0 1
2

)
,

where η = 〈ϕ(LR + i0+)−1ϕ〉 and η is the complex conjugate of η.
Furthermore, one can easily see that Λ−∆ = −JΛ∆J (J is an anti-unitary operator).
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2.4.3 Proof of Proposition 2.1

Since 0 < σ � λ2 � ∆, the operators Λe can be viewed as a perturbation of matrices A
by the small operators B. Analytic perturbation theory then gives the eigenvalues of Λe.
For Λ0:

ε
(1)
0 =0,

ε
(2)
0 =i

(2 + e−β∆)δ

2(1 + e−β∆)(4(Reξ−)2 + δ2)

σ2

λ2
+O(λ2(

σ

λ2
)4),

ε
(3)
0 =2iδ(1 + eβ∆)λ2 +O(

σ2

λ2
),

ε
(4)
0 =iδλ2 + 2λ2ϑ+O(

σ2

λ2
),

ε
(5)
0 =iδλ2 − 2λ2ϑ+O(

σ2

λ2
),

(2.43)

For Λ∆, we obtain by analytic perturbation theory:

ε
(1)
1 = ∆− λ2P.V.

∫
R3

|g(k)|2

|k|
d3k + 2iλ2 J̃(0)

β
+O(

σ2

λ2
)

ε
(2)
1 = ∆ + 4iλ2 J̃(0)

β
+O(

σ2

λ2
).

Finally, the eigenvalues of Λ−∆ are obtained by changing ∆ to −∆ in the last formulas.
This completes the proof of Proposition 2.1.
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2.4.4 Resonance projections

By analytic perturbation theory we find the eigenprojections of Λ0 associated to ε
(s)
0 ,

P
(1)
0 =(2 + e−β∆)−1

∣∣∣∣∣∣∣∣∣∣


1
1
1
0
0


〉〈

e−β∆

1
1
0
0


∣∣∣∣∣∣∣∣∣∣

=(2 + e−β∆)−1|(ϕ11 + ϕ22 + ϕ33)〉〈(e−β∆ϕ11 + ϕ22 + ϕ33)|

P
(2)
0 =(2 + 3e−β∆ + e−2β∆)−1

∣∣∣∣∣∣∣∣∣∣


1
1

−1− e−β∆

0
0


〉〈

e−β∆

1
−1− e−β∆

0
0


∣∣∣∣∣∣∣∣∣∣

+O(σ)

=(2 + 3e−β∆ + e−2β∆)−1|ϕ11 −
e−β∆

2
(ϕ22 + ϕ33) + (ϕ23 + ϕ32)(1 +

e−β∆

2
)〉

〈|e
−β∆

2
(2ϕ11 − ϕ22 − ϕ33) + (ϕ23 + ϕ32)(1 +

e−β∆

2
)|+O(σ)

P
(3)
0 =〈u∗3, u3〉−1|u3〉〈u∗3|

=(1 + e−β∆)−1

∣∣∣∣∣∣∣∣∣∣


1

−e−β∆

0
0
0


〉〈

1
−1
0
0
0


∣∣∣∣∣∣∣∣∣∣

+O(σ)

(2.44)

and

P
(4)
0 =〈u∗4, u4〉−1|u4〉〈u∗4|

=
1

2

∣∣∣∣∣∣∣∣∣∣


0
0
0
1
1


〉〈

0
0
0
1
1


∣∣∣∣∣∣∣∣∣∣

+O(σ),

P
(5)
0 =〈u∗5, u5〉−1|u5〉〈u∗5|

=
1

2

∣∣∣∣∣∣∣∣∣∣


0
0
0
1
−1


〉〈

0
0
0
1
−1


∣∣∣∣∣∣∣∣∣∣

+O(σ)

(2.45)

where ui (u∗i ) are eigenvectors of Λ0 (Λ∗0) corresponding to ε
(s)
0 (ε

(s)
0 ), s = 3, 4, 5.
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Similarly, the eigenprojections of Λ±∆ associated to ε
(1,2)
±1 are

P
(1)
+1 =

1

2
|ϕ12 − ϕ13〉〈ϕ12 − ϕ13|+O(σ) (2.46)

P
(2)
+1 =

1

2
|ϕ12 + ϕ13〉〈ϕ12 + ϕ13|+O(σ) (2.47)

P
(1)
−1 =

1

2
|ϕ21 − ϕ31〉〈ϕ21 − ϕ31|+O(σ) (2.48)

P
(2)
−1 =

1

2
|ϕ21 + ϕ31〉〈ϕ21 + ϕ31|+O(σ) (2.49)

2.4.5 Proof of Proposition 2.2

Our starting point is (2.26). We have

Trρ∞A = χ
(1)
0 (A) + χ

(2)
0 (A) =

〈
ψS, B(P

(1)
0 + P

(2)
0 )(A⊗ 1lS)ψref

〉
. (2.50)

The projections are given above, in Section 2.4.4 (with σ = 0). Consider the term with

P
(1)
0 , 〈

ψS, BP
(1)
0 (A⊗ 1lS)ψref

〉
(2.51)

=
〈ψS, B(ϕ11 + ϕ22 + ϕ33)〉

〈
(e−β∆ϕ11 + ϕ22 + ϕ33), (A⊗ 1lS)ψref

〉
2 + e−β∆

.

Using that
ϕjk =

√
3(|ϕj〉〈ϕk| ⊗ 1lS)ψref

(see (2.8)), that B commutes with |ϕj〉〈ϕk|⊗1lS (see before (2.9)) and that Bψref = ψS (see
(2.9)), we have 〈ψS, Bϕjk〉 =

√
3 〈ψS, (|ϕj〉〈ϕk| ⊗ 1lS)ψS〉 =

√
3[ρ0]k,j, which is the matrix

element of the initials system state ρ0 in the energy basis (see (2.4)). In particular,

〈ψS, B(ϕ11 + ϕ22 + ϕ33)〉 =
√

3. (2.52)

Next, from the expression (2.8) we obtain

〈
(e−β∆ϕ11 + ϕ22 + ϕ33), (A⊗ 1lS)ψref

〉
=

e−β∆A11 + A22 + A33√
3

, (2.53)

where Akl = 〈ϕk, Aϕl〉. Combining (2.51), (2.52) and (2.53) we obtain〈
ψS, BP

(1)
0 (A⊗ 1lS)ψref

〉
= Tr(ρS,β,0A). (2.54)

This gives one contribution, ρS,β,0, to ρ∞ (the one coming from P
(1)
0 in (2.50)). One deals

with P
(2)
0 in the same way and finds the result (2.27).
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The speed of convergence in (2.29) is given by the smallest non-zero imaginary part

of all the ε
(s)
j (σ = 0), which, according to Proposition 2.1, is proportional to λ2. This

shows Proposition 2.2.
Remark. The formula (2.54) says that the contribution to the dynamics (2.26) coming

from one of the terms with vanishing resonance energy (ε
(1)
0 = 0) and associated projection

P
(1)
0 yields simply the equilibrium part. This general fact, not specific to the particular

model at hand, is encoded by the fact that the Gibbs state of the system is always in
the kernel (null-space) of the level shift operator associated to the unperturbed energy
zero, Λ0 (see also (2.5)). The latter fact is, in turn, implied by the very construction
of the Liouville operator, for which the coupled system-reservoir equilibrium state is an
eigenvector with eigenvalue zero. We refer to [12,15] for further detail on this.

2.4.6 Stationarity of ρS,β,0 and ρτ for σ = 0

In the Liouville representation of the 3-level system, the Gibbs state ρS,β,0 is given by the
normalized vector

ΩS,β,0 = Zβ
−1/2(e−βE0/2ϕ11 + e−βE/2(ϕ11 + ϕ22)),

where Zβ = e−βE0/2 +2e−βE/2. It follows from (2.12) and (2.13) that (note that Xσ=0 = 1l)

Tr(Tt(ρS,β,0)|ϕm〉〈ϕl|) =
∑

j=−1,0,1

sj∑
s=1

eitε
(s)
j χ

(s)
j (|ϕm〉〈ϕl|)

=
∑

j=−1,0,1

sj∑
s=1

eitε
(s)
j 〈ΩS,β,0, BP

(s)
j (|ϕm〉〈ϕl| ⊗ 1l)ψref〉.

(2.55)

The operator B is B = 1lS ⊗ b with

b =

√
3

eβEZβ

 e−β∆/2 0 0
0 1 0
0 0 1

 .

Using the explicit expressions of the resonance projections given in Section 2.4.4, is easy
to see that χ

(s)
j (|ϕm〉〈ϕl|) = 0 for all j and s, except for j = 0 and s = 1, 2. Therefore,

(2.55) becomes

Tr(Tt(ρS,β,0)|ϕm〉〈ϕl|) = Tr(ρS,β,0|ϕm〉〈ϕl|). (2.56)

Since (2.56) holds for all m, l, we have Tt(ρS,β,0) = ρS,β,0.
Next we consider ρτ . In the Liouville representation space, the state ρτ is represented

by the normalized vector τ⊗τ. The associated operator B = 1lS⊗b satisfying Bψref = τ⊗τ
is determined by

bϕ1 = 0, bϕ2 = ϕ2 − ϕ3, bϕ3 = ϕ3 − ϕ2.

Just as for ρS,β,0, this information together with the formulas in Section 2.4.4 gives
Tt(ρτ ) = ρτ .
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2.4.7 Proof of Proposition 2.4

The result follows directly from (2.13), (2.15) and Proposition 2.1.

A Spectral density and correlation function

The definition of the spectral density is

J(ω) =
√

2π tanh(βω/2) Ĉ(ω), ω ≥ 0, (A.1)

where Ĉ(w) is the Fourier transform,

Ĉ(w) =
1√
2π

∫ ∞
−∞

e−iwtC(t)dt, w ∈ R,

of the symmetrized correlation function

C(t) =
1

2

[〈
eitHRϕ(g)e−itHRϕ(g)

〉
β

+
〈
ϕ(g)eitHRϕ(g)e−itHR

〉
β

]
. (A.2)

Here, g is the form factor of the interaction (see (1.4)) and 〈·〉β is the thermal average in
the reservoir equilibrium state. Note that

C(t) = C(t) = C(−t) and Ĉ(ω) = Ĉ(ω) = Ĉ(−ω).

The definition (A.1) is the same as in [13]. In the latter paper, it is shown (Section 4) that
it coincides with the definition of the reservoir spectral density for the discretized modes
given in [9]. A direct calculation of the correlation function and its Fourier transform,
together with (A.1) yields the expression (1.13). We point out that slightly different
conventions are used in the literature; for instance the spectral density of [14] is twice
that used here. An explicit calculation gives

C(t) =
1

2
Re

∫
R

e−iut u2

|1− e−βu|

∫
S2

|g(|u|,Σ)|2dΣ du. (A.3)

Reservoir correlation time τc. Take

g(k) = A|k|pe−
1
2

(|k|/κ0)m , (A.4)

for some amplitude A and p = −1/2 + n, n = 0, 1, 2, . . ., κ0 > 0 and m = 1, 2 (see before
(1.7)). Then we obtain from (A.3) that

C(t) = 2πA2Re

∫
R

e−iut |u|2(1+p)

|1− e−βu|
e−(|u|/κ0)mdu. (A.5)
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We wish to obtain the decay properties of C(t), as t becomes large. Consider p = −1/2,

which is an important case since then J̃(0) > 0 (see (1.14) and also Proposition 2.4). For
definiteness, let m = 1 in (A.4). Then

C(t) = 2πA2β−2Re

∫
R

e−iut/β

∣∣∣∣ u

1− e−u

∣∣∣∣ e−|u|/(βκ0)du. (A.6)

Splitting the integral in (A.6) over positive and negative values of u and using that∣∣∣∣ u

1− e−u

∣∣∣∣ =

{
u+ u e−u

1−e−u
, u ≥ 0

u
1−e−u

, u < 0

we arrive at
C(t) = 2πA2β−2[T1(t) + T2(t)]. (A.7)

Here,

T1(t) = Re

∫ ∞
0

e−iut/βue−u/(βκ0)du = (βκ0)2 1− (tκ0)2

(1 + (tκ0)2)2
(A.8)

and

T2(t) = 2Re

∫ ∞
0

e−iut/β u

1− e−u
e−ue−u/(βκ0)du. (A.9)

In the integral (A.9), only values of 0 ≤ u ≤ 1 contribute essentially, due to the decay of
the factor e−u. Also, for these u, we can replace u

1−e−u
≈ 1. Then we readily obtain

T2(t) = 2βκ0
βκ0 + 1

(βκ0 + 1)2 + (tκ0)2
. (A.10)

From (A.7), (A.8) and (A.10), we see that the reservoir correlation time is

τc =
1

κ0

. (A.11)

Remark. An equivalent (discrete mode) expression for the correlation function (A.2)
is

C(t) = 1
2

∑
~k

|g~k|
2 cos(ω~kt)[2n~k + 1], (A.12)

where n~k is the average of the number of reservoir modes with given discretized wave

vector ~k ∈ R3. For a thermal reservoir, n~k = 1

e
βω~k−1

. Consider the dispersion relation

ω~k = k ≡ |~k|. Then 2n~k + 1 = coth(βk/2). Due to the quantum vacuum energy,
represented by the term +1 in (A.12), the thermal factor 2n~k + 1 does not cut off high
frequencies, as 2n~k + 1 ≈ 1 as k → ∞. This is why our reservoir correlation decay time
is 1/κ0, given by the inverse of the cutoff frequency we have introduced by hand in the
form factor (A.4). For a classical reservoir, instead of the termal factor 2n~k + 1 in (A.12)
we would only have 2n~k ∼ 2e−βωk . In that situation, one can check that the decay time
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of C(t) is different for small and large temperatures. Namely, the decay time is 1/κ0 if
βκ0 << 1 but for low temperatures, when βκ0 >> 1, the decay time is 1/β, since the
available modes are cut off by the thermal distribution.

System decay times in terms of reservoir correlation time. With the choice
p = −1/2, m = 1, we obtain from (1.13) and (A.11) that

J(ω) = 2π2A2ωe−ω/κ0 = 2π2A2ωe−ωτc . (A.13)

The resevoir spectral density J(ω) hence depends on the reservoir correlation time τc.
Consequently, so do the characteristic decay rates of the open system, see (1.15) and

(1.17). The definition of J̃(0), (1.14), together with (A.13) shows that

J̃(0) = 2π2A2 (A.14)

does not depend on τc, while

J(∆) = 2π2A2∆e−∆τc .

Note that the decay rate for the non-degenerate system, (1.17), has a dependence on τc

not only via the spectral density J(∆), but for small temperatures also via the constant
ϑ.
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