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Abstract: The method of positive commutators, developed for zero temperature prob-
lems over the last twenty years, has been an essential tool in the spectral analysis of
Hamiltonians in quantum mechanics. We extend this method to positive temperatures,
i.e. to non-equilibrium quantum statistical mechanics.

We use the positive commutator technique to give an alternative proof of a fundamen-
tal property of a certain class of large quantum systems, ceftedn to Equilibrium.
This property says that equilibrium states are (asymptotically) stable: if a system is
slightly perturbed from its equilibrium state, then it converges back to that equilibrium
state as time goes to infinity.

1. Introduction

In this paper, we study a class of open quantum systems consisting of two interacting
subsystems: a finite system, called the particle system coupled to a reservoir (heat bath),
described by the spatially infinitely extended photon-field (a massless Bose field). The
dynamics of the coupled system on the von Neumann algebra of observables is generated
by a Liouville operator, also called Liouvillian or thermal Hamiltonian, acting on a
positive temperature Hilbert space. Many key properties of the system, such as return to
equilibrium (RTE), i.e. asymptotic stability of the equilibrium state, can be expressed in
terms of the spectral characteristics of this operator.

Applying the positive commutator (PC) method to the Liouville operator of systems
in question, we obtain rather detailed information on the spectrum of these operators.
This allows us to recover, with a partial improvement, a recent fundamental result by
several authors on RTE.
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Our main technical result is a positive commutator estimate (also called a Mourre
estimate) for the Liouville operator. This result holds for a wider class of systems than
previously considered.

Spectral information on the Liouville operator, and hence the property of RTE, is
extracted from the PC estimate through Virial Theorem type arguments. It turns out that
the existing Virial Theorem techniques are too restrictive to apply to positive temperature
systems, and we need to extend them beyond their traditional range of application.

There is a restriction on the class of systems for which we prove RTE, due to our
Virial Theorem type result mentioned above. This is the first result of this kind, and we
expect that it will be improved to yield the RTE result for a considerably wider class of
systems.

1.1. A class of open quantum systems. The choice of the class of systems we analyze

is motivated by the quantum mechanical models of nonrelativistic matter coupled to
the radiation field, or matter interacting with a phonon field (quantized modes of a lat-
tice), or a generalized spin-boson system. For notational convenience, we consider only
scalar Bosons. A good review of physical models leading to the class of Hamiltonians
considered here is found in [HSp].

1.1.1. Thenon-interacting system. The algebra of observables of the uncoupled system
istheC*-algebral = B(H ,)®W($0), whereB(# ,) denotes the bounded operators on
the particle Hilbert spact , andW($)o) is the Weyl CCR algebra over the one-particle
spacefip = {f € L2(R3,d%) : [|k|7f(k)|?> < oo}. The restriction tof € o
comes from the fact that we will work in the Araki-Woods representation of the CCR
algebra, which is only defined for Weyl operatdir's /) with f € o (see [AW, JP1, JP2,
BFS4]). The dynamics of the non-interacting system is given by the automorphism group
R > 1> o0 € AUt(A), oy 0(A) = "o Ae~1"Ho whereHg = H, ® 15 +1, ® Hy is

the sum of the particle and free field HamiltoniafAg acts on the Hilbert spade, @H ,

whereH ; = @, .65@”"‘ is the Fock space ové andH ; is the free field Hamiltonian,

i.e. the second quantization of the multiplication operatowby |k|, Hy = dI' (w); if

a*(k), a(k) denote the (distribution valued) creation and annihilation operators, then we
can express it equivalently &y = fw(k)a*(k)a(k)dSk. The particle Hamiltonian is
assumed to be a selfadjoint operator?ép which has purely discrete spectrum:

o (Hy) = {E))Z0, (1)

(where multiplicities are included, i.e. for a degenerate eigenvdiuee havek; = E;
for some;j # i), and we denote the orthonormal basis diagonalizipdy {¢;}. Let tr
denote the trace of(# ), then we further assume that

Z,(B) i=tre P < 00, VB >0. 2)

We do not need to further specify the particle system. As a concrete example, one may
think of a system of finitely many Schrodinger particles in a box (hence the name particle
system), or a spin system. In some of our results (see Theorem 2.4 on the Fermi Golden
Rule Condition), we shall assume that the spectruri pfs finite (V-level system).

The equilibrium state at temperatufe= 1/8 > 0 for the non- interacting system

is given by the productys o = wf ® a)/’; € A*. Here,wf() = e ) s the

tre=AHp
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particle-Gibbs state at temperatl,ﬂanda)é is the field3-KMS state that describes the
infinitely extended field in the state of black body radiation, i.e. its two-point function
is given according to Planck’s law bzyg(a*(k)a(k’)) = ’Z;’fk—“f} The GNS construction
for (A, a; 0, wp o) yields the (up to unitary equivalence) unique déta Lo, 28,0, )
(dependent oiB). Here,# is the GNS Hilbert space with inner produet -), Qg0 is

a cyclic vector for thex-morphismz : 2 — B(#H) (the representation map), atite
Liouvillian Lg is the selfadjoint operator gdf implementing the dynamics, i.e. satisfying
LoS2g,0 = 0and

wwmwm»=$%@amwmy4mmﬂﬁ,VAe%

This GNS construction has been carried out in [AW] (for the field, the particle part is
standard since it is a finite system), see also [JP1, JP2, BFS4]. We shall not explicitly
use the representation maghere and thus omit its presentation which can be found in
the above references. The GNS Hilbert space and cyclic vector are given by

H=H,®H,®FL*R x §2)), (3)
Qpo=®Q, (4)

WhereQ/’; is the particle Gibbs state at temperatgrgiven in (21).F(L?(R x §?)) is

the Fock space ovdr(R x $2) with vacuums2, which we call thelak&ic—Pillet glued

space. It was introduced by Jaic and Pillet in [JP1] and is isomorphic s @ Hf,

the field GNS Hilbert space constructed in [AW]. Itis easily verified that the Liouvillian

is given byLo = L, + Ly (see also [JP1, JP2]). We write simply, instead of

L, @1z 2rxs2) and similarly forL ;. Here,L, = H,®1,—1,® H)y, Ly = dI'(u)

andu is the first (the radial) variable iR x S2. It is clear that the spectrum a@f, is

the setfe = E; — E; : E; ; € 0(H,)} and the spectrum df ; is the entire real axis
(continuous spectrum) with an embedded eigenvalue at 0 (corresponding to the vacuum
eigenvectog2). ConsequentlyLg has continuous spectrum covering the whole real line
and embedded eigenvalues given by the eigenvalugg of

1.1.2. The interacting system. We now describe the interacting system by defining an
interacting Hamiltonian acting oK, ® H ;-
H = Ho+ v, (5)
where the coupling constahtis a small real number, and
v=G® (a(g) +a*(g). (6)

Here,G is a bounded selfadjoint operator #f},. The functiong € $q is called thdorm
factor and the smoothed out creator is givendiyg) = fd3k g(k)a* (k). We assume
g to be a bounded'*-function, satisfying the following infra-red (IR) and ultra- violet
(UV) conditions (recall thab = |k|):

IR:  |g(k)| < Cw?, forsomep > 0, asw — 0,
for some results, we assurpe> 2, (7)
UV: |gk)| < Cw™ 4, for someg > 5/2, asw — oo.
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In addition, we assume that conditions (7) hold for the derivatjye if p, g are replaced
byp—-1,4¢9+1.

We point out that the value coming from the model of an atom coupled to the radiation
field in the dipole approximation is = 1/2 (without this approximationpy = —1/2).
From now on we will refer tgp = 1/2 as the physical case.

The interacting Hamiltonian (which describes the coupled system at zero tempera-
ture) corresponds to an interacting Liouvillian (positive temperature Hamiltonian) which
is given by (cf. [JP1, JP2, BFS4]):

L=Lo+A, (8)
I =G;®(a*(g1) +a(g) — G, ® (a*(g2) +a(g2). 9)

Here,G; := G®1,, G, := 1, ®CGC, whereC is the antilinear map o#,, that, in the
basis that diagonalize§,,, has the effect of complex conjugation of coordinates. The
origin of C is the identification of the Hilbert-Schmidt operatorsigp with H, ® #,

via the isomorphismo)(¥| < ¢ ® Cy (see also [JP2, BFS4]). Moreover, we have
defined, forg € L?(Ry x §?):

Vit p@)ugu,a), u=>0
g1(u, ) = (10)
Ni(—u) ug(—u,o), u<0
andgo(u, @) = —gi1(—u, @), where the functionn = w(k) is the momentum density

distribution, given by Planck’s law describing black body radiatjotk) = (¢ —1)~1,
o = |k|. The structure o1 in (10) comes from the Jai¢—Pillet gluing which identifies
L?(R%) @ L?(R3) with L2(R x §2) via the isometric isomorphisrifi, f2) — f,
fu, ) =ufi(u, o) foru > 0andf(u, @) = ufo(—u,a) foru < 0. For more detail,
we refer to [JP1, JP2].

Forx # 0, one can construct a vect®g ; € H s.t. the vector state defined by
wp(A) = (Qp,, AQp,) is a B-KMS state w.r.t. the coupled dynamies(A) =
et Ae~"L where A is an element in the von Neumann algebia := B(H,) ®
B(H,) ® (W ($Ho)) (weak closure iB(F(L2(R x $2)))). An extension of the algebra
of observables to this weak closure is necessary since the full dynamics does not leave
B(H ) ® B(H ) @ m(W($H0)) invariant. It is not difficult to show tha®)t, ;) is aW*-
dynamical system (compare also to [FNV, JP2]). Notice in particulartkgt, = 0.

The construction of2g ; goes under the nansiructural stability of KMSstates, see
[BFS4] for this specific model, but also [A, FNV, BRII]. FgtA| small, one has the
estimate (for thed-notation, see after (20)):

€251 — L2p,0ll = O(BIA]. 11)

We show in Appendix A.1 that is essentially selfadjoint (Theorem A.2).

1.2. Spectral characterization of RTE. We define the equilibrium states at temperature
T = 1/8 > 0 to be thep-KMS states. Hence the equilibrium state of the coupled
system at inverse temperaty$e> 0 is given by the above constructeg , e 21"

A conjectured property of KMS states is theiynamical stability (which should be a
natural property of equilibrium states). In our case, this meansathaty, — wg »

ast — oo, for statesw’ that are close tayg ;. This is called the property of return to
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equilibrium. Apart from specifying the mode of convergence, it remains to say what we
mean byw’ being close tavg ;.. There is a natural neighbourhood of states aravgl

in which the dynamics is also determinedbythe set of alhormal statesy’ W.r.t. wg ;.

By definition,«’ is normal w.r.tweg j, iff

YAeM: o (A)=tr(pA), (12)

where t(-) is the trace on the GNS Hilbert spagggiven in (3) ando is a trace class
operator or#{, normalized as 5 = 1.

Proposition 1.1 (Spectral Characterization of RTE). Let 9t C B(#) be a von Neu-
mann algebra and suppose that wg(-) = (Qp, - ) : M — C isa p-KMS state with
respect to the dynamics o; € Aut(9). Suppose that the Liouvillian L generating the
dynamics on H has no eigenvalues except for a simple one at zero, so that the only
eigenvector of L is 2. Then, for any normal state o’ wir.t. wg, and for any observable
A € I, we have

T
lim % / o' (0 (A))dt = wp(A). (13)
0

T—o00
This means that the system exhibits return to equilibriumin an ergodic mean sense.

The proof is given e.g. in [JP2, BFS4, M]. Better information on the spectrum of
yields stronger convergence;fifhas absolutely continuous spectrum, except a simple
eigenvalue at 0, then (13) can be replaced by lim ' (o, (A)) = wg(A).

1.3. The PC method. This section introduces the general idea of the PC method. As we
have seen above, the Liouville operators in the class of systems we consider consist of
two parts:

L=Lo+Al,

whereLg is the uncoupled Liouville operator, describing the two subsystems (particles
and field) when they do not interadtis the interaction, and is a real (small) coupling
parameter. The spectrum @f) consists of a continuum covering the whole real axis,
and it has embedded eigenvalues, arranged symmetrically w.r.t. zero. Moreover, zero is
a degenerate eigenvalue. We would like to show that.fer O, the spectrum of. has
no eigenvalues, except for a simple one at zero, because then Proposition 1.1 tells us
that the system exhibits RTE!

In other words, we want to show that all nonzero eigenvaluekgoére unstable
under the perturbation/, and that this perturbation removes the degeneracy of the zero
eigenvalue, see Fig. 1. We know thathas a zero eigenvalue with eigenvecty ,,

o(Lo) £ 0 o(L)
—
0 0
degenerate non-degenerate

Fig. 1. Spectra of the unperturbed and perturbed Liouvillians
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the perturbed KMS state. This means that our task reduces to showing instability of all
nonzero eigenvalues, and that the dimension of the nullspatésodit most one.

It is conventional wisdom that embedded eigenvalues are unstable under generic
perturbations, turning into resonances. We now outline the technique we use to show
instability of embedded eigenvalues: the PC technique.

To do so, we concentrate first on a nonzero (isolated) eigenvabfel.o whose
instability we want to show. The main idea is to construct an anti-selfadjoint operator
A, called theadjoint operator (to L), s.t. we have the following PC estimate:

EA(L)[L, AlEA(L) > 0EZ (L), (14)

whered > 0is a strictly positive numbeF s (L) denotes the spectral projectorlobnto
the intervalA, and[-, -] is the commutator. Here\ is chosen to contain the eigenvalue
e but no other eigenvalues &f. Equation (14) is also called a (stridflourre estimate.

If it is satisfied, then one sees thathas no eigenvalues in by using the following
argument by contradiction: suppose tiiat = ¢y, with ¢’ € A and||vy|| = 1. Then
we haveEa (L)Y = ¢, and the PC estimate (14) gives on one hapd L, Aly) > 6.
On the other hand, formally expanding the commutator yields

(W, [L, AlY) = (¢, [L — ¢/, Aly) = 2Re((L — ¢")¢r, Ay) = 0, (15)

which leads to the contradictigh < 0, hence showing that there cannot be any eigen-
value of L in A.

This formal proofis in general wrong. Indeed, both operatoasdA are unbounded,
and one has to take great care of domain questions, including the very definition of the
commutatofL, A].

Relation (15) is called th&frial Theorem, and it can be made in many concrete
cases rigorous by approximating the hypothetical eigenfunctidsy “nice” vectors.
The situation in which this works is quite generally given by the case wltierd] is
bounded relative td., which is in particular satisfied fa¥-body Schrédinger systems,
and systems of particles coupled to a fisldero temperature. However, in our case the
condition is not satisfied, and as mentioned above, we have to develop a more general
argument of this type.

The treatment of the zero eigenvalue is similar, except that we prove (14) only on
RanE (L) P+, whereP is the rank-one projector onto the known zero eigenveeor
of L, and P is its orthogonal complement.

2. Main Results

Our main technical result is the abstract PC estimate, Theorem 2.1. This result is the
basis for the spectral analysis of the Liouvillian, as explained above. We point out that
the PC estimate holds for infrared behaviour of the form factor (see (7)) characterized
by p > 0, which covers the physical cage= 1/2.

Theorem 2.2 characterizes the spectrum of the Liouvillian in view of the property of
RTE. To prove this result, we combine the PC estimate with a Virial Theorem type argu-
ment. It is for the latter that we need presently the more restricting infra-red behaviour
p > 2. We think that our method can be improved.

A direct consequence of Theorem 2.2 is Corollary 2.3 which says that the system
exhibits RTE (recall also Proposition 1.1).
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All the results hold under assumption of the Fermi Golden Rule Condition, (18) and

(29). In Theorem 2.4, we give explicit conditions on the operét@nd the form factor
g so that thd=ermi Golden Rule Condition holds. We start by explaining this condition.
In the language of quantum resonances, it expresses the fact that the bifurcation of
complex eigenvalues (resonance poles) of the spectrally deformed Liouvillian takes
plazce at second order in the perturbation (i.e. the lifetime of the resonance is of the order
AT9).

As we have mentioned above, the Liouvillian corresponding to the particle system
at positive temperature is given dy, = H, ® 1 — 1 ® H,, acting on the Hilbert
spaceH, ® Hp, S0 L, has discrete spectrum given bYL,) = {e = E; — E; :

E;, E; € 0(Hp)}. For every eigenvalue of L, we define an operatdi(e) acting on
the corresponding eigenspace, Rl , =e) C H, ® Hp, by

F(e):/ zm*(u,oz)P(L,7 #e)(Lp —e+uym(u, ), (16)
RxS

wheres denotes the Dirac function, and where the operatés given by
mu, o) =Gy g1(u, o) — G g2(u, o). 17)

Recall thatg1 2 andG, , were defined in and just before Eq. (10).

It is clear from (16) thatl"(e) is a non-negative selfadjoint operator. The Fermi
Golden Rule Condition is used to show instability of embedded eigenvalues. For nonzero
eigenvalues, the condition says tlige) is strictly positive:

fore #0, y.:=info (I'(e) | RanP(L, =¢)) > 0. (18)

We show in Theorem 2.4 th&t(0) has a simple eigenvalue at zero, the eigenvector
being the Gibbs state of the particle systérg,(see (21)). This reflects the fact that the
zero eigenvalue af g survives the perturbation, however, its degeneracy is removed, i.e.
the zero eigenvalue df is simple. The Fermi Golden Rule Condition to& 0 requires
strict positivity on the complement of the zero eigenspade(64, i.e.

vo:=info (F(O) | RanP(L, = O)PQ,,> > 0. (19)

Here, PQp is the projection ont@ 2, andPi,, =1- PQp We give in Theorem 2.4

below epr|C|t conditions oy andg (k) s.t. (18) and (19) hold
Here is our main result.

Theorem 2.1 (Positive Commutator Estimate). Assume the IR and UV behaviour (7),
with p > 0. Let A be an interval containing exactly one eigenvalue e of Lo andlet i €
Cg° beasmooth functionst. - = 1on A and supph No (L) = {e}. Assume the Fermi
Golden Rule Condition (18) (or (19)) holds. Let 8 > Bo, for any fixed 0 < g < oc.
Thenthereisa g > O (depending on Bp) sit. if 0 < [A] < Ag, then we havein the sense
of quadratic forms on D(N/2) (see Remarks, 1. below), for some explicitly constructed
anti-selfadjoint operator A:

BIL, ATA(L) = 3°V%O(L) (v (1 — 58.0Pay0) — O(AY20)) A(L).  (20)
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Notation. Lets be areal variable. Thefi(s) stands for a family; of bounded operators
depending o, satisfying lim o ||T||/s = C < oo. In (20),s = 11/200,

Remarks. 1. N = dI'(1) is the number operator in the positive temperature Hilbert
space (see also (3) and (89)), ahl, , is the projector onto the span@f; o, the-KMS
state of the uncoupled system (see (4)). Als@, is the Kronecker symbol, equal to one
if e = 0 and zero otherwise.

2. We show in Theorem A.2 thdt is essentially selfadjoint on a dense domain in the
positive temperature Hilbert space.

3. The commutatofL, A] is by construction in first approximation equal b (see
Sect. 4), andi(L) leaves the domaif(N/2) invariant (see e.g. [M]), so that (20) is
well defined.

4. There is no smallness condition on the interkglapart from it only containing one
eigenvalue of.g).

Theorem 2.2 (Spectrum of L). Assume the IR condition p > 2 (see (7)). Let 8 > Bo,
for any fixed 0 < B < o0, B < oo. Then the Liouvillian L has the following spectral
properties:

1) Let e # 0 be a nonzero eigenvalue of Lo, and suppose that the Fermi Golden Rule
Condition (18) holds for e. Then thereisa Ag > 0 (dependent on Bp) s.t. for 0 <
[A| < Ao, L hasno eigenvaluesinthe openinterval (e—, e), where e_ isthe biggest
eigenvalue of Lo smaller than e, and e isthe smallest eigenvalue of L bigger thane.

2) Assume the Fermi Golden Rule Condition (19) holds for ¢ = 0. Then there is a
Ao > 0 (dependent on Bg) st. if 0 < |A] < Apgand O < B|A| < Ag, then L hasa
simple eigenvalue at zero.

Remark. Theorem 2.2 shows that if the Fermi Golden Rule Condition holds for all
eigenvalues ol.g, thenL has no eigenvalues, except a simple one at zero.

Corollary 2.3 (Return to Equilibrium). Suppose the IR condition and the condition
on B asin Theorem 2.2, and that the Fermi Golden Rule Condition is satisfied for all
eigenvalues of Lg. If |A] > 0 is small (in the sense of Theorem 2.2, 2)), then every
normal state w.r.t. the 8-KMS state Q5 ;. (the zero eigenvector of L) exhibits return to
equilibriumin an ergodic mean sense.

The corollary follows immediately from Theorem 2.2 and Proposition 1.1, where the
ergodic mean convergence is defined by (13).

Theorem 2.4 ( Spectrum of I'(e)). Set T'y(e) := P(L, = e)T'(e) P(L, = ¢) and for
Ei, Ej S U(Hp), let Eij = Ei — Ej.

1) Let e # 0. Then there is a non-negative number g = 8o(G) (independent of B, A)
whose value is given in Appendix A.2 (see before (97)) sit.

. 2
T,(e) > 50i’j:|2if‘#o<|Eij|'/Szds(w,a) |g(Eij], )| )P(Lp =e).

In particular, the Fermi Golden Rule Condition (18)issatisfied if ther.h.s. isnot zero.
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2) I' ,(0) has an eigenval ue at zero, with the particle Gibbs state Q/’; as eigenvector:

Qf =2Z,(5) 2y e P g @ i, (21)

where we recall that Z,(8) was defined in (2). Moreover, if

eﬂEn

goi=inf |{gn. Gom)[? /Rgs(EmeNngo

m,n:E,<0 e‘ﬂEmn -1
isstrictly positive, then zero isa simple eigenvalue of T, (0) with unique eigenvector
Qg’ and the spectrum of T',(0) has a gap at zero: (0, 2goZ,) N o (T',(0)) = @. In
particular, the Fermi Golden Rule Condition (19) holds.

Remarks. 1. If e # 0 is nondegenerate, i.e.df= E,,,, for a unique pailmo, no),
then (see before (97))

do = Z |<¢H’G‘pno>|2+ Z |<¢m’G¢’mo>|2'

n#ng m¥£mo

2. If Hy, is unbounded, thegg = 0. Indeed, letn be fixed, and take — oo, then
Enn < 0and{g,, Gg,) — 0, sincep, goes weakly to zero. Notice though tizat> 0
is only a sufficient condition for the Fermi Golden Rule Condition to hold at zero.
3. Forgg > 0, the size of the gap,gdZ,, is bounded away from zero uniformly in
B > Bo, since

. . tre—AHp . . tre—AHp
lim inf — 3 = lim inf _—
p—ocomn:Ey<Ey e PEn — e=BEn — poco, i _p o—BEw — o—BEn

whereE; := E;—Eg > 0 (Egisthe smallest eigenvalue ff,) andI:Ip =H,—Ep>0
(the smallest eigenvalue rbi’,, is zero).

3. Review of Previous Results

Proving the RTE property is one of the key problems of non- equilibrium statistical me-
chanics. Until recently, this property was proven for specially designed abstract models
(see [BRII]). The first result for realistic systems came in the pioneering work sféJak™
and Pillet [JP1, JP2] in 1996.

In their work, Jakic and Pillet prove return to equilibrium, with exponential rate of
convergence in time, for the spin-boson system (i.eNalevel system coupled to the
free massless bosonic field with = 2; their work easily extends to general finitg
for sufficiently high temperatures. Their work introduces the spectral approach to RTE.
The analysis is done in the spirit of the theory of quantum resonances, spetical
deformation techniques, where the deformation is generated by energy- translation. The
IR condition on the form factor ig(w) ~ w?, @ — 0, with p > —1/2, hence includes
the physical casp = 1/2. However, there is a restriction on temperatyké:< 1/8.

The spectral deformation technique imposes certain analyticity conditions on the form
factor.

The N-level system coupled to the free massless bosonic field is also treated in
[BFS4], but the spectrum of the Liouvillian is analyzed using complex dilation instead
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of translation. RTE with exponentially fast rate in convergence in time is established
for small coupling constarit independent of 8. Bach, Frohlich and Sigal adapt in this
work their Renormalization Group method developed in [BFS1-BFS3] to the positive
temperature case. The IR conditiorpis- 0, which includes the physical case.

In a recent work, Deremgki and Jagic [DJ] consider the Liouvillian of thev-level
system interacting with the free massless bosonic field. Their analysis of the spectrum
of the Liouvillian is based on thigeshbach method which is justified with the help of the
Mourre Theory, applied to the reduced Liouvillian (away from the vacuum sector). The
Mourre theory in turn is based on a global positive commutator estimate for the reduced
Liouvillian. The IR condition for instability of nonzero eigenvaluespis> 0, and for
the lifting of the degeneracy of the zero eigenvalue, jiis 1.

The method for the spectral analysis of the Liouvillian we use employs the energy-
translation generator in the Jag=Pillet glued positive temperature Hilbert space, as
in [JP1, JP2] and [DJ]. We prove a Mourre estimate (PC estimate) for the original
Liouvillian with a conjugate operator which is a deformation of the energy shift generator
mentioned above. This method has been developed in the zero-temperature case in
[BFSS] (for the dilation generator though).

Our construction of the PC works for the IR conditipn> 0, which includes the
physical case. In order to conclude absence of eigenvalues from the PC estimate, the
Virial Theorem is needed. So far, the systems for which the Virial Theorem was applied
have always satisfied the condition thiat A] is relatively bounded with respect g
in which case a general theory has been developed, see [ABG] (for specific systems,
see also [BFSS] for particle-field at zero temperature, [HS1Mdyody systems). We
remark though thatin [S], Skibsted extends the abstract Mourre theory to certain systems
where[L, A] is not relatively bounded (bUfL, A], A]is).

We develop in this work a Virial Theorem type argument in the case where the
commutatofL, A]is notrelativelyL-bounded. This comes at the price that our estimates
involve the triple commutatdi[L, A], A], A], and consequently, we need a restrictive
IR behaviour of the form factor, namepy> 2. We think that this restriction coming from
the part of the proof using the Virial Theorem (not the PC estimate), can be improved
by a better understanding of the Virial Theorem.

It should be pointed out that the Virial Theorem is an important tool of interest on its
own, still currently under research, see e.g. [GG].

Let us mention that in order to show RTE, we need the conditien 2| < 1g/8
(Corollary 2.3), so our result of RTE is not uniform in temperatur&as 1/8 — 0.

The same situation occurs in [JP1, JP2]. Uniformity in temperature is obtained in [BFS].

We finish this brief review by comparing our approach to that of [DJ] which, in the
literature on the subject, is closest to ours.

The main difference isthat[DJ] develop first the Mourre theory fedaced Liouville
operator, starting from a global PC estimate on the radiation sector. Using the Feshbach
method, they show then the limiting absorption principle for the Liouvillian acting on
the full space. [DJ] use the fact that the system has a global PC estimate (i.e. for positive
temperatures, one cannot avoid using the generator of translations as the adjoint operator)
and we do not see how to modify that technique for a different adjoint operator.

The use of a different adjoint operator than thesiakPillet translation generator
might be desirable, forinstance in order to remove restrictive assumptions on the coupling
functions.

In our method, we modify the bare adjoint operator in such a way as to have a local
PC estimate right from the start for tia! (i.e. not for a reduced) Liouvillian. This
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method has the advantage that it works for various choices of the adjoint operator, in
fact, it was first developed (for zero temperatures) for the dilation generator in [BFSS].
It is true though that the use of the translation generator greatly reduces the number of
estimates to be performed, and this is the reason why we use it here.

Let us also mention that in proving our PC estimate, we do not need a smallness
condition on|A| (except thatA should contain only one eigenvalue bf,), while in
Mourre theory it is usually necessary to assume [thais small.

We do not claim that either of the two methods is better, both having, in our view,
advantages and disadvantages. We do believe that our approach gives new insights anc
can open doors to new techniques to handle the problem of RTE and related spectral
problems.

4. Proof of Theorem 2.1: Step 1

We prove in this section the PC estimate w.r.t. spectral localization in the uncoupled
Liouvillian Lo, see Theorem 4.3. Step 2 consists in passing from this estimate to the one
localized w.r.t. the full LiouvillianL and is performed in the next section.

Our estimates are uniform i > Bo (for any 0 < Bo < oo fixed). For notational
convenience, we s@p = 1, see also the remark after Proposition A.1 in Appendix A.1.

4.1. PC with respect to spectral localization in Lo. We construct an operat@® (see
(27)) which is positive on spectral subspaces.gfsee Theorem 4.3 (the main result of
this section).

OnL?(R x S?) and forr € R, we define the unitary transformation

(0) o) =¥ -1,

which induces a unitary transformatids, on Fock spaceF = F(L3(R x $2)):
U, = I'(U)), i.e. fory e F, the projection onto tha-sector ofU,y is given by
Uy), (u1, ... ,up) = Yu(ur —t,... ,u, —t). Here and often in the future, we do
not display the angular variables, ... , «, in the argument off,,. U; is a strongly
continuous unitary one-parameterd R) group on¥. Its anti-selfadjoint generateto,
defined in the strong sense By;—oU; = Ag, is Ag = —dI'(d,). The domain of the
unbounded operatokg, D(Ag) = {¢ € F : o1=oU; ¥ € F}, is dense inF, which
simply follows from the fact thatig is the generator of a strongly continuous group.
From now on, we writd/, = ¢'40, r € R. The following result serves to motivate the
definition of an operator denoted b, Ag] (see (23) below). The proof is not difficult
and can be found in [M].

Proposition 4.1. Onthedenseset D(Lo)ND(N),wehavee 40 Le!40 = Lo+t N+,
where I; is obtained from I by replacing the form factor g by its trandate g’, and
gl(u, o) = g(u +t, o). e obtain therefore

ath:oe—onLetAo =N+ )\i’ (22)

where ] = G; ® (a*(9,81) +a(d,g1)) — Gr ® (a*(9,g2) + a(d.g2)). Thederivativein
(22) is understood in the strong topol ogy.
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On a formal level, we havé,|;—g e "4°Le'40 = —AgL + LAg = [L, Ag], which
suggests thédefinition of the unbounded operator [L, Ag] with domainD([L, Ag]) =
D(N) as

[L, Agl := N + Al. (23)

We point out that the operatdi, Ag] is defined as the r.h.s. of (23), and not as a
commutator in the sense é&fAg — AgL. Remark thafL, Ag] is positive onD(N) N
RanPé, where 2 is the vacuum inF. Indeed, from Proposition A.1, it follows (take
e.g.c = 1/4) [L, Aol > 3N — 0(1?), so thatPg[L, AglPg > (3/4— 0(?)) Pa.
On the other handPq[L, Ag] P = 0, so if we want to find an operator that is positive
also onC, then we need to modifyig.

For a fixed eigenvalue € o (L), define

b(e) = O (@RS[Q _ QIRZ@) ,
-1/2 (24)
R. = ((Lo — )2+ 62) .

Here,# ande are positive parameters, agj Q are projection operators ¢ defined
as

OQ=PLp=e)@Pq, O0=1-0. (25)

In what follows, we denot®, := QOR..

Proposition 4.2. The operator b = b(e) is bounded and [L,b] = Lb — bL is well
defined on Dg and it extends to a bounded operator on the whole space. We denote the
extended operator again by [L, b].

Proof. The operatob is bounded since bothQ and QI are bounded. Furthermore,
since||LoR¢|| < 1+ |e|/e and||LoQ]|| = |e|, then[Lg, b] is bounded. Moreover, since
I1QIl < € and[[IRZ1 Q|| < Ce 2|[(N + DIQ| < 2Ce 2|1Q| < Ce~2, then also
IIL1, b]|l < oo. We used the fact that RdrD C RanP(N < 1), sincel is linear in
creatorsandvQ =0. 0O

We define the operatgL, A] by D([L, A]) = D(N) and
[L,A]l:=[L, Aol +[L,bl= N+l +[L,b]. (26)
Again, we pointoutthdtL, A]isto be understood asther.h.s. of (26) (With b] defined
in Proposition 4.2). The commutator notatifh, A] is chosen because in the sense of

quadratic forms orD(Lg) N D(N) N D(Ag), one hasy, [L, Alp) = 2Re(Lyp, Agp)
with A = Ag + b. Define now the operata® by D(B) = D(N) and

1 9 -
Bi=[L Al = 7oN = 1N + Al +IL.b]. (27)
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Here is the main result of this section:

Theorem 4.3. Lete € o (L) andlet A beaninterval around e not containing any other
eigenvalueof L ,. Let E bethe (sharp) indicator function of A and set Eg = Ea(Lo).
Assume that the Fermi Golden Rule Condition (18) (or (19)) holds. Then there is a
number s > 0st.if0 < 6, €, €071, 0123 < s, then we have on D(N1/2), in the sense
of quadratic forms:

2%
EXBER > TyeEﬁ(l— 38.0Pay0) EX. (28)

where P, , isthe projector onto the span of 24 o defined in (4).

An essential ingredient of the proof of Theorem 4.3 isFhashbach method, which
we explain now.

4.2. The Feshbach method. The main idea of the Feshbach method is to use an isospec-
tral correspondence between operators acting on a Hilbert space and operators acting
on some subspace. We explain this method adapted to our case. For a more general
exposition, see e.g. [BFS2] and [DJ].

Consider the Hilbert spacésg, defined byH, = Ranvag, wherey, = x(N <v)
is a cutoff inN, andv is a positive integer. With our definitions ¢f, Q, (see (25)) we
have

H, = Rany, ES Q ® Rany,E2 Q. (29)

Define 01 = x,EQQ and Q2 = x,EQQ and setB;; = Q;BQ;,i,j = 1,2. The
operatorsB;; are bounded due to the cutoffAn Notice thatQ; , are projection operators
(i.e. 0%, = Q1) sincex, commutes withE and Q.

The main ingredient of the Feshbach method is the following observation:

Proposition 4.4 (Isospectrality of the Feshbach map). If z isin the resolvent set of
Bos (i.e. if (Bo2 — z)~1 | RanQ» exists as a bounded operator) and if

|02(B22— 702801 < 0. |01BQ2(Bz—)710s] <0, (30)

then we have z € o4(B) < z € ox(&;), where the Feshbach map £, = &.(B) is
defined by B > &, = B11 — B12(B22 — z) 1By, and o standsfor o or opp (Spectrum
Or pure point spectrum).

The proof of Proposition 4.4 is given in a more general setting e.g. in [BFS2, DJ]; we
do not repeat it here. We use the isospectrality of the Feshbach map to show positivity
of B in the following way (see also [BFSS]):

Corollary 4.5. Let 9o = inf o (B | H.) and suppose that B> > 9 Q> for some & >
—o00, and that inf o (£y) > Xo uniformly in ¢ for ¥ < 91, where g and 1 are two
fixed (finite) numbers. Then we have ¥g > min{?, inf o (Ey,)}.

Remarks. 1. All our estimates in this section will be independent of ffiecutoff
introduced in (29). In particulav‘}, %o, ¥1, Xo are independent of. This will allow us
to obtain inequality (28) o® (N 1/2) from the corresponding estimate on RgfV < v)
by lettingv — oo (see (50) below).

2. The condition int (Ey) > T uniformly in ¢ for ¥ < ¥4, implies thatdg # —oo.
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Proof of Corollary 4.5. If 99 > ¥, then the assertion is clearly true.d§ < o, then
o is in the resolvent set a2y, and it is easy to show that (30) holds foe= g, so
Vo € 0(Epy), 1.€.00 = INf o (Eyy). O

4.3. Proof of Theorem 4.3 (using the Feshbach method). We apply Corollary 4.5 to the
operator

B' =B —5,03Pg,,, (32)

wheres, o is the Kronecker symbol, i.&, o is one ife = 0 and zero otherwise. The
positive numbes will be chosen appropriately below, see after (48).

First, we show thaiB,, > (3/4 — §,,08) Q2 (see (33)), then we show th&p >
—1—38,,08 =: Xo (see Proposition 4.6), uniformly i for ¥ < 1/2 —§, ¢ 4. Invoking
Corollary 4.5 will then yield the result. Notice that due to the cutaffin (29), B;;,

i, j € {1, 2} are bounded operators. All the following estimates are independent of

We first calculateB), = 028’ Q2. UsingQ Q2 = 0, and(Sg,oPéﬂ .02 = 8,002, we
obtain from (31) and (27), '

9
Bby = 02 ( oV + A0 +0X2REI QI — 1QIRD) — 5, 08) Q2. (32)
Proceeding as in the proof of Proposition A.1, one showsMkat 0,
~ 2
(w.rdy)| < cINY2y 12+ CE 0,112,112

With our assumptions op, ||8ugl||i2 < oo, uniformly in 8 > 1. Using the inequality
above withc = 1/10 and||ﬁfl QI < Ce~2, we obtain

8 2 2 -2
By > 02 1ol — OA +01%7) — 808 | Q2.

As can be easily checke@®, = Q» P4, so we haveV Q> > 0>, and we conclude that
there is as1 > 0 s.t. if A2 4+ 0122 < 51, then

8 3
By > <E — 80,08 — O(A? +9A26—2>) 02> (Z - 5e,oa> 0>. (33)

In the language of Corollary 4.5, this means we can take 3/4 — §, 06.
In a next step, we calculate a lower boundé&nfor ¥ < 1/2 — §,.06.

Proposition 4.6. We have, uniformly in ¢ for 9 < 1/2 — 8, 0é:

€ 29)\, SZ ’

where the error term is independent of §. Recall that QZ is the particle Gibbs state
defined in (21).
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Proof of Proposition 4.6. By definition,&y = Bj; — Bj»(Bj, — 19)‘1351. We show that
By, is positive andB},(Bj, — ¥) 1B}, is small compared t&;,.
With 001 =0, 001 = 01 andae,oPéﬁle = Se,oPéle, we obtain from (31)
: B
and (27):

8,00

—2
B, > 2022 IRCI —
1= Ql( < 202

Pg,,) 01— 002, (35)
B

where we used] > —75N — 0(x?) andQ1N = 0.
Let us now examing; ,(B5, — ) ~1B,,. Notice that from (32), we get
Q2(Byy — 9)Q2 = 7502NY2(1— LW + 8. 0)N "1+ K)NY2Q2,  (36)
where we defined the bounded selfadjoint oper&tpacting on RarQ; as

K1 = 0N-12 (Af +0A2RIQI — IQIES)) N2, (37)

Sincel| Q2N ~Y2|| < Land||/(N +1)~Y2| < C,we getl| K1]| < C(r+61%2). Now
on RanPé, we haveN > 1, so since we look at s.t.¢ + 8, 08 < 1/2, we obtain

1- Q@ +8.,0N 1=1-Q1=73. (38)
Therefore we can rewrite (36) as

_1\1/2
Q2(By, — )02 = 2 02NY2(1 - L + 5, 00)N 1) 2(1 + Kp)

(39)
x (1= Q@ + 8,00 N 1) 2NY2 0y,
where
Ko=(1— 2@ +5, 0N ) K1 (1— Q@ + 5, 00N )2,
and
9
IK2ll < ZIIKall = OG+03%72) < 1.
We have thus from (39):
- - _1\-1/2
Q2(Byy — ) 7202 = W0,NV2(1 — (9 46, 08)N~1) k2
10 ~1/2 (40)
x (1= B® +8.,0)N1) 7 N120,,
whereK = (1 + K2)~%2 is bounded and selfadjoint withk |2 = |K?|| = [(1 +

K < m < 2. We have therefore, from (40) and (38), and uniformlyifor
9 < 1/2— 8,.08:

~1/2

(v BiatBha — ) Biywr) = BIK (1~ B0 + 5,00 N2l P

2809 NTV2B5,y |12 = 5IN Y2 By ||%.

IA

(41)
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Notice thatBj, = B12 and B5; = Bz1. Now, remembering (27), and sindeQ; = 0
and020 = 0= 001,
= N"Y2Q,[A1 +0x(Lo — e)RT — OIR I (Lo — €) + 0X2(IR-T —R-1Q1)] Q1.

Using IN"Y2Q;| < 1, |[1Q1ll < C, [ Q1ll < C, INTY2I|| < C\(Lo — )01
=0, (Lo — e)Re|l <1, we get

|N"Y2Byy |* < €2 + 02% w12 + 2022 Re 1 019112,
thus with (41), we obtain

~ (V. Bia(Bsz — ) Bpy)
=2 _
= —100%2(y, QIR 01v) — 02 + %% ]y,
and so, together with (35), we get, uniformlyﬁnfor ¥ <1/2—8,.08:

£y > 20021 — 59)Q1<IR I— )Ql 002+ 6244, (42

29x2 Foy
We point out that the error term in the last inequality does not deperid \bfith the
choice of parameters we will make (see (68)), (42) showsthat —1—§, o8 uniformly
in 9 for 9 <1/2— 6,06, i.e. in the language of Corollary 4.5y = —1 — §. 6.

The remaining part of the proof consists in relating the strict positivity of the nonneg-
ative operatOthIEfI Q1 to the Fermi Golden Rule Condition. We lgtandl. = I}
denote the parts df containing annihilators and creators only, so that I, + I.. Thus

—2 -2
Q1IR.1Q1 = Q1l.R.1:01 = Q11,RZ1. Q1. (43)
In the first step, we usel) 01 = 0 andQ11. = 0 (sincel, P, = 0) and in the second
step, we use@®11, 0 = 011, (sincel, QO = 0). Now write
011,R21.01 = 01 / / (. @)a(u, ) R2()a* (', aym( o) Q1. (44)

wherem is defined (17), and where we display the dependenﬁé ohe. The operator-
valued distributionsd and a*) satisfy the canonical commutation relatiojagu, «),
a*(w',a’)] = 8(u — u')é(a — o’). Next, we notice that the pull-through formula
a(, )Ly = (Ly+ u)a(u, o) implies

a(u, @)R%(e) = R%(e — w)a(u, ). (45)
Using the CCR and formula (45) together with the fact that «) 01 = 0, we commute
a(u, a) in (44) to the right and arrive at
(44) = Qlfm*(u, @)R?(e — uym(u, a) Q1. (46)

We can pull a factoPg, out of 01 and place it inside the integral nextﬁf(e —u) and
thus replacek?(e —u) by (L , —e~+u)?+€?)~1. Notice thak (L, —e+u)?>+€?)~! —
8(L, — e +u) ase — 0. More precisely, we have
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Proposition 4.7. Thereisan sp > 0st. for 0 < € < s2, we have

1
Ql/m*(u,a) ((L,, —e+u)?+ 62) mu, @) 01 > ng (F(e) - 0(61/4)> 01.

Proposition 4.7, which we prove in Appendix A.3, together with (42)—(44) and (46)
yields (34), proving Proposition 4.6.0

Now we finish the proof of Theorem 4.3. If the Fermi Golden Rule Condition (18)
holds, then fore £ 0, we havel'(e) > y, > 0 on RanQ1, so we obtain from (34),

and under the conditions on the parameters stated in Theoreﬂb%n J/e, so by
Corollary 4.5:

. . 62
inf o (B | He) > min{1/2, 7022 1y} = =", (47)

since by our choice of the parameters (see (68)), we will I%f/e< (2ry.) L.
Fore = 0, we havel'(0) = I'(Q) P sinceF(O)Ql’; = 0 (see Theorem 2.4), so

Proposition 4.6 gives

sz”'

oA2 €
s >m—01({v0— — 0+ €071 +02%73) 0. (48)
€ 2022

For some flxed O< a < 2( i) (independent ob), A, €), there is as3 > 0 s.t. if

0 < 622%™ < 53, thenyo — 522, > —a, which gives with (48):

%
Ey >m— Q01 <—aP§JZ‘p — 0(61/4 +e67 4 9)»26_3)> 01
€ B

2
> n% (—a — O +e07? +9A26—3)) 01

2%
—2mr —a Q1.
€

The last step is true provided/* 4+ €61 + 912¢=3 < s4, for some smalks > O.
Remembering thaB’ = B — (SPéﬂ o e obtain from Corollary 4.5,

. n _ 5 622
inf o ((B ~ 5P ) mo) > min(1/2, ~2ra63/e) = ~2ra—.

from which we conclude that if the condition on the parameters given in Theorem 4.3 is
satisfied withs = min(sz, s2, s3, s4), then

)»2
xwESBES x, = x, ES ( 2na— +5P9ﬂ0> E2 . x
oA2 0
2—yovaA( —a(m —1/yo— L+a/yo)Pa,o) EQ xv (49)
9)\2
> Tyoqug(l — 3Pa, ) EQ Xv.
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where we used/yp < Z(n—l—l) Estimates (47) and (49) yieldy :

012
(v ERBER o) = == (. 0 ER (L= $000Pa, ) ER 0¥).  (50)

Suppose nows € D(NY?). Then, sinceN + 1)~Y2B(N + 1)~1/? is bounded (see
the definition of B, (27)), and since, — 1 strongly asv — oo, we conclude that
vy € D(NY?):

(v EXBEQy) = g—kzye(w EQ (1 - $60,0Pa, ) ES ).

which proves Theorem 4.3.0

5. Proof of Theorem 2.1: Step 2

We pass from the positive commutator estimate wlgtgiven in Theorem 4.3 to one
w.r.t. the full Liouvillian L, hence proving Theorem 2.1. The essential ingredient of this
procedure is the IMS localization formula, which we apply to a partition of unity w.r.t.
N. Then, we carry out the estimates on each piece of the partition separately.

5.1. PC with respect to spectral localization in L. Let 1 = 32(x) + %3(x), x € Ry,

AZ e C§°([0, 1)), be aC-partition of unity. For some scaling parameter>> 1,
deflneX, = x;(N) = 3;(N/o),i = 1, 2. The reason why we introduce the partition
of unity is that/ x1 = 0(c¥/?) is bounded. Since thg leaveD(N/2) invariant, then
[xi, [xi» BIl = x?B — 2x;Bx; + Bx? is well defined onD(N/?) in the sense of
quadratic forms, and by summing ovet 1, 2, we get the so-called IMS localization
formula (see also [CFKS]):

B= Zx,Bx, 3Lxi. L BI1. (51)

Furthermore, we obtain from (51) and (27), in the sense of quadratic forg&H ?):

h(L)[L, AJh(L) = {gh(L)Nh(L) + Zh(L)XlBth(L)
12 (52)

+ 3h(L)[xi, [xi, BIA(L).
In Propositions 5.1-5.3 below, we estimate the different terms on the r.h.s. of (52).
Then we complete the proof of Theorem 2.1 by choosing suitable relations among the
parameterg, X, €, o (see (68)).

Proposition 5.1. Thereisa ss > Ost. if 1201 < s5, then

o
hxaBxah = Shxsh. (53)
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Proof. Recall thatB = 1—90N + A1 4+ [L, b]. SinceQ x> = 0 andQ1I x> = 0 (see also

end of proof of Proposition 4.2), we have): (¥, x2[L, b]x2¥) = 0. Furthermore,
Proposition 6.1 gives ¢ > 0, AI > cN — O(A?/c), SO

(v 020N /204 31y x20) = (¥ 22 [ (5 = ON = 0G2/0)] v )
> 35 (w, x%nﬂ),

providedr2o < s5 and where we picked the value= 1/10 and usegoN x2 > axzz.
O

Proposition 5.2. We have

1 0.2 12\, 2, DOA?
haaBxah+ fohNh = e (1 — 000 )) hah = > =08 0t Pay ol

Z5 -1 172 —1\ ;2
——O(e@ + €0+ Aoe )h .
€

Proof. Let Fg, := Fa/(Lo), whereA’ is an interval whose interior contains the closure
of A, andF,' is a smooth characteristic function with supportifs.t.E s (LO)F_g, =0,
where we denotetl — Fg/ =: F_g,. We takeA’ to contain only one eigenvalue 6f L),
namelye, so that (28) in Theorem 4.3 holds, wiﬂﬁ replaced byEOA,. We have

hx1Bxih + f5hNh = hx1F3 BFQ x1h (54)
+ 2hNh+ hx1FQBFO xih + adjoint  (55)
+hyaFO, BFO xih. (56)

First, we show that (55) and (56) are bounded below by small terms. To treat (55), notice
that

x1FQBFO x1 = x1FQON/10+ AT + L, bDFO x1
= 242FQ FON + i FS O + (L, b)) FO, x1 (57)
> o FQ O + L, ) FO 1.

Now for ¢1 2 € D(N1/?), we have for any: > 0 (see Proposition A.1)

(91 2762)| = 2 (|(01. Tusa)| + [{02. Lusn))
= Ca (I9all INY2g2] + g2l IN*2p11))

< O (91l + 192112) + ¢ (IN*2g1]12 + INY2022) .

With ¢1 = Fgf)(llﬁ, 92 = F_2,X11/f, this yieldsV ¢ > O:

— 22
(. 0 FOATFS yaw)| < €= 2150012 + 261N 292
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sox1FY, MFO, 9,1+ adjoint> 4(C* X2+ cN) Takingc < 7 gives then

AnNh + hy1 FOATFO, xah + adjoint> (& — 40)hNh — CA2hyZh

(58)
> —Ckzhxl
Next, usingQF_g/ =0and(Lg — ¢)Q = 0, we calculate
XAFQIL, bIFO, x1 = x1F[Lo — e, BIFS, xo + 2 x1 FIT, b1FS,
— 0Ax1F% QIR (Lo — €)FO,x1 (59
+ 0220, (-RZ1QI — 1QIR, + QIRZT) F xa
= 0(O1 + 622 261/?),
where we used R, F ,|| < |A|7Y < Cc and|[Ix1]| < Col/2. Next, since supp N

suppFO, = ¢, then x1 F FOR(L) = x1FO,(h(L) — h(Lo)), so by using the operator
calculus introduced in Appendle 4, we obtain

xFOh(L) = x1 / dFp(2)(Lo—2) "L —2)"'h(L) = O(xa/?).  (60)

From (59), we then havex1FQ, (L, b]F th > Ceeiz(eol/2 + roe K2, which,
together with (58) and (57) ylelds

%
(55) > _c_(ee—l +eot? 4+ Aae_l)hz. (61)
€

Our next step is estimating (56). Again, usiQﬁ =0, we get

X1FYBF x1
— x1FO(ON/10+ A1) FO x1 — OA2 41 FO, (Ef] oI + IQIEE) Fox
> —C(Z% + 612,

where we used/ > —cN — 0(A\%/c) and||F_°,R€2|| < |A’|72 < C. We thus obtain,
sinced << 1:

70 g0 012 ¢ ,
(56)=hX1F BF /th > CTgh . (62)
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Finally, we investigate the positive term (54). By sandwiching (28) in Theorem 4.3 (with
E replaced bye? ) with F?,, and noticing tha#?, EQ, = F?,, we arrive at

0.2
hFQBFS ah = x—yeh i FY, (1= 56e.0Pay0) Fxah

oA2

> = yeh (xF(F2)? = 3600Payo)
612 —\2

= Tyeh <x12 (1 - Fg,) - gae,opgﬁio) h (63)
9}\2 R

> Tyeh (Xf (1 - 2F2/) - gSe,OPQ,g,(J) h
Z5 2 12, 5

= ——yeh ()F(1 — Cho"?) = $5..0Pa0) .

where we used (60) in the last step once again a2 (F3,)2 Po, , > —2Pq,, inthe
second step. Combining (63) with (61) and (62) yields Proposition 52.

. 2 B
Proposition 5.3. Wehave Y1 , hlxi. [xi. Bllh = 20 (6~ 10=3/2)n2,

Proof. Notice thatys and 1— x2 have compact supports contained[() 2]. Now
in the double commutator, we can replageby 1 — x2 without changing its value.
So it suffices to estimatgy (N /o), [x(N /o), B]l, wherex € C3°([0, 2]). We have

[x(N/o),[x(N/o), Bll =[x(N/o),[x(N/o), Vi + [L, b]]]. It is not difficult to see
that we have in the sense of operatorsiam/2):

~ A
KN /0), [X(N/o). 211 = 2 f d7(2) / A7 (O (NJo -2 \(NJo — )t
x I(Njo —2) Y (NJjo — )L, (64)

We used the operator calculus introduced in Appendix A.4. Now sjdce/ /o —
)72 < CII(N + DY2(NJo — 2)72| < Co¥2|Im 2|1, which follows from

JrF1
MY 2 co¥2)img L,
x>0 |x/o — 2z

we conclude that
|lIx (N /o), [x (N /o), A1 < gCro—%/2, (65)
Next, write for simplicityx instead ofy (N /o), and look at
[x. [x. [L. b1l = OAlx. [x. [L.R-1 Q111 + adjoint
We claim that
[x.[L.R21Q]] = 0. (66)
Write first[L,R°1 Q] = R-[Lo, I1Q + A[1,R°10]. Then

[x.R°[Lo, 11Q] = [%. R [Lo. 110] = XR[Lo. I1Q — R-[Lo. 110X
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Here,x = 1— x. Notice thatQy = 0, and since Raﬁf[Lo, I1Q c RanP(N = 1),we

have alsq_(ﬁf[Lo, 110 =0, foro > 2. Similarly, [x, [I,I?EI 011 = 0, so (66) follows.
We obtain thus from (65, [x, B]] = O (xo —3/2), which proves the proposition.
O

Now we finish the proof of Theorem 2.1. The IMS localization formula (52) together
with Propositions 5.1-5.3 yields

o212 5012
ML, Alh = =, (1 O(kal/z)) hy2h + th 3h — = ——yobe.0h Pay ol

oA2
——0 (69_1 + eol/? + roe L + 60_1A_1a_3/2) h2.
€

The sum of the first two terms on the r.h.s. is bounded below by

9%2% (1 - 0(,\01/2)) 12,

So we get

62 5 1
oA~ - _ /2
ML Alh = = h[ye (1 580.0Pay0 — O(ho )) -

-0 (69_1 +eo? froe + e@‘lk_la_?’/z) ]h
Finally, we choose our parameters. leet= 1¢/100 o — 3=6/100 g _ ;0/100 gng
choose
(é,6,0) = (44, 55, 26). (68)

It is then easily verified that for small, the conditions on the parameters given in
Theorem 4.3 and Proposition 5.1 hold, and furthermore, (67) becomes

BIL, Ah = 32528 [y, (1= §5.0Pa,, — OGM9299) — 0120 |

> 2,91/50y, (Ee(l _ 556’0[79&0) — O(Al/zoo)) h. O

6. Proof of Theorem 2.2

We follow the idea of the Virial Theorem, as explained in Subsect. 1.3: Assuisea
normalized eigenvector af with eigenvaluee. If ¢ = 0, we assume in addition that
/S RanPL . Leta > 0 and setf, := a~1f(ieAg), Where f is a bounded”>°-

function, such that the derivativg is positive and s.tf’(0) = 1 (take e.g,f = Arctan).
Set

fo = f'(iaAo), and hy = /f).

Furthermore, seff, := f"(iazAg). Forv > 0 andg € C{°(—1,1), definey, =
g(wN)y. Hereg, v willbe chosen small in an appropriate way. We define the regularized
eigenfunctiony,, , = hy ¥, . Notice that

Yo = ¥, asa,v — 0. (69)
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Set for notational convenience in this section

K :=[L, Aol =N +l.
The strategy is to show thak),, (% vs Kg, v) — 0, asa, v — 0 (see the next
subsection, (74)). For this estlmate we need the restrictive IR behgwiour2, see
after Proposition 6.1. Using the PC estimate, Theorem 2.1, we also shoykthat,
is strictly positive (agx, v — 0), see Subsect. 6.2, (86). The combination of these two
estimates yields a contradiction, hence showing that the eigenfunctdi we started

off with cannot exist.
In the casee = 0, we need to use that the pI’OdUCjﬁ‘oPé‘ﬂk is small, which is

satisfied provide@|r| < C, see (11).

6.1. Upper bound on (K),, . Using(L — e)y = 0 and tha{N, I] is N*/2-bounded,
we find that ’

(fu(L =€)y, = (8v fulL — €)gy)y = (fugulAl. g1}y, = 0(a™1¥?).  (70)
Next, observe that
2Im(fa(L —e))y, = ([L,ifal)y, = Re(L,iful)y,
= Re(fyN + AL ifd]),, . (1)
where we used in the last step
[Lo.ifu] = / df(z)(iaAo — 2) M[Lo, Aol(izAg —2) "

= / df(z)(iaAo—2) 2N

sinceAg andN commute (second step) and we made use of (113) wvith1 in the last
step. The commutatg¥, i f,,] is examined in

Proposition 6.1. The following equality holds in the sense of operators on D(N1/2) or
in the sense of quadratic forms on D(N1/4):

[, ifu) = flad} (1) — ’Eafg,’adﬁo(l) +R, (72)

where we assume that the k-fold commutator adf‘O(I) = [---[1, Aol, Ag, -+, Ag] is

NY2-pounded (or N¥/4-form bounded) for k = 1, 2, 3. Theterm R satisfiesthe estimate
RN~Y2, N“VARN=Y4 = 0(a?).

Proof. Using the operator calculus introduced in Appendix A.4, we write
(1, ifo]

= / df(@) iAo —2)7MI, Aol(iwAo —2)~t
= frady () — ia / df(@)(iwAo — 2)2ad] (I (iw Ao — 2)*

= fradby (D) ~ Safladd, ()~ o? f dF @) (iAo — o) %ad3, (1w Ao — ).
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The last integral is defined to kg and the estimates follow by noticing th&g and N
commute. O

Notice that it is here that we neQdd’j‘o(I)Nl/zll < C, k = 2, 3, hence the more
restrictive IR behaviour p > 2. We obtain from (72) and recalling that= [/, Ag]:

(71)= Re(f k), — % Re{ia f;’adf,o(l)>w + 0(ra?v™Y?)

=(K)y,, +* Re<ha[ha, A — ’Ea f;/ad§0(1)> + 00t Y2)  (73)

= (K)y,, + 0?3
We used in the last step that the real part in the second term above is
<[h“’ o 111 = %“[ o/t/7adfxo(1)]> = 0?7 V?),

v

sincead} (1) is N*/?-bounded. Combining (73) and (70), we obtain

vl/2 o2
(K)y,, = Ch (7 + m) i (74)

6.2. Lower bound on (K),, . Let A be an interval containing exactly one eigenvalue,
e, of L,. We introduce two partitions of unity. The first one is given by

XA +%a=1
wherexa € C*(A), xa(e) = 1.We localize inL, i.e. we setya = xa(L). The second
partition of unity is given by

X+xt=1
wherey € C* is a “smooth Heaviside function”, i.e.(x) = 0if x <O andy(x) =1
if x > 1. We setfom > 0: x, = X(N/n),yﬁ =1- an. We will choosen < 1/v, so
that x, v, = x,¥. The last equation will be used freely in what follows. We are going

to use the IMS localization formula (51) with respect to both partitions of unity, and we
start with the one localizing itv:

1 1
(K)o = <xn1<xn + XK + 500 Dt KN+ 50005 (s K]]>
Vav (75)

n 7 —_—
> (KD + 5 1TVl = 0Gn=%2),

where we used tha& > n/2 on RanPé, and the estimate (65) with replaced byx.
Next, from the IMS localization formula for the partition of unity w.dt, we have

<K)Xn‘/fot,v = (XAKXA + YAKYA + R)Xn‘pot,u

> (xa(K +[L,bD)xa + XaKXa + R) — 21300 (an 4+ an~1?)

X}l.‘/fot,l)
= 0l xaxn Vel = CO8e.0ll PayoxaxnVanll® + (XaKxa + R), .

— 219500 (an 4 an~Y?). (76)
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Here, several remarks are in order. First, we have t=22 [X A, [Xa, K11 + [xa,
[xa, K11, and we have used in the second step the fact that

(LLy DD yaxuvrr = (LL — €, B]) g suhay = 2RE(XA(L — o )n ¥, bXAXnHa V)
= A19/500(an + )»n_l/z).

We recall thatb is a bounded operator (see Proposition 4.2), With = 0 (11%59),

In the last step in (76), we used the positive commutator estimate, Theorem 2.1, in the
following way. Fore # 0, Theorem 2.1 gives right awagya (K + [L, b)) xa > exi,

where we recall thatL, A] = [L, Ag] + [L, b], andb is defined in (24). We have set

6 = CA9%50_In the zero eigenvalue case= 0, we have

5,91/50 L0
(K + 1L D) gy, 2 5 (101 = 5Pa,0) = 0G)
AXnVa,v
5,91/50 5,91/50

2
Yol PQ;;,()XAXnI/fa,U 1<

2
> voll xaxn¥avll® —

4

Setting agai® = CA%/*Cyields (76).
We now estimate the remainder ten Notice that the same observation as at the
beginning of the proof of Proposition 5.3 shows that we have the estifRate,,, , =

2i IM (X A XnWa,vs [X A+ K1XnVa,v). Therefore,
[(R) oo | < CIX A Xnha W I X as K1 Xnha W]l (77)

Now we have orD(N): [Xa, K1 = [dja(z)(L — 2) 7K, LI(L — 2)~%, where we
recall that(L — z)~1 leavesD(N) invariant. Furthermore,

2

[K,L]= AN, I14+ AL, Lol + A°[I, 11 = A[N, 11+ A (ud,g) + A%[1, 1], (78)

where I (ud,g) is obtained from/ by replacing the form factog by ud,g. The last
commutator in (78) is bounded, and the other twoM#?-bounded, so we obtain

[ X as Klahatr | = 00n™?) el (79)
Next, we estimate the first term on the r.h.s. of (77):

X axnha¥ll = (L — &) XA (L = ) Xnha V|
= CI(L = &) xnha |l

_ _ (80)
< Clln™ AN, Ixpha ¥l + 00n™%?) + Cllxa(L — ha V|
< Ckn_1/2||)(,/,1/fa,u|| +00n~%? + an).
Combining this with (79) and (77), we arrive at the estimate
|(R>Xn‘w0u,v S C)"ZHX]{LwOl,V” ”anot,l)” + O()"Znil + )\-an?’/z) (81)

There is one more term in (76) we have to estim@tg:KyA)X Y’ SincePq (N +
A)Pg > 0 and sincePol Po = 0, we have the bounl > Pg Al P + adj. > —Ch,
which implies

(KaKTa)y, ., = —CHXaxn Vel (82)

o,V
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Using (82) and (81), we obtain from (76)

(K)o = Ol Xn Ve IZ = O + COIX A xn Ve I = CO8e.0ll Py g X Xn Ve 1P
— CA2 X Yaw | 1 Xn Ve | = 219300 (an + an~Y?2)
—20@n®? +an7Y). (83)

Next, we have for any, € > 0:

W wll 1 X Vel < 1l xn Ve 12 + 072 X Va1
< (en L+ Mg Vel + 07 21X, Va2

In the second step, we used the standard fact that we can choose the partition of unity
Stlx.vl? < ellxa¥|? + € 2%, ¥ |12, for anye > 0. Combining this with (83), we
obtain from (75):

(K)y,, = 0 — CR2en™ + m)xn Va2 + (/2 — CAZn 2217, Va2
— 08¢0l Pag o xa XnWa | — O + COIT a XnVanll®

— 0Gan®? 4 21950y, 4 ;69/50,-1/2)

Considerr small and fixed. Then if

% —Cpte? >0, (84)

we obtain

(K )y = OllhaWlI? — CO8e.0ll Pay o xa Xnha o1
1 3/2 1/2 1 3 2.2 (85)
—O(en " +n+an /2 LY )—CO(n ~+n""+an°).

On the last line, we used (80). Let us choose the parameters as follows:

¢ = o110

n=a¥20 =g V2

then (84) is verified, and furthermore, (85) reduces to
(K)o, = OlWanll? — COBe.0ll PayoxaxnVanlI? — 0@ (86)

On thg other hand, recalling (74), we obtain by choosing the parametamg o as
V="
(K)y = < Ca? (87)

o,y —

Since|| Yol = Y]l = 1 ase, v — 0, and since
—C08¢,0ll PayoXa Xn Va7 = —CO8. 0ll Py o Py, W2

(recall thaty = Pémw if ¢ = 0), we obtain thus for smalt from (86) and (87) the
inequality ’

(1= CoeollPayo P, wI?) = Ca¥2 (88)

N D
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Fore # 0, this is a contradiction, and it shows that there can not be any eigenvalues of

L inthe intervalA. Remark that there is no smallness condition on the sizg ekcept

that it must not contain more than one eigenvalueg®fso we can choos& = (e—_, ey ).
Letuslook now atthe cage= 0. Again, we reach a contradiction from (88), provided

||PQﬂ_0P§ﬂvlw||2 << 1. In this case, we conclude that zero is a simple eigenvalde of

Now the fact thaf] PgﬁyoPéwn = O(B|r]) follows immediately from (11), so taking

B1x| small enough finishes the proof of Theorem 2.21
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A. Appendix

A.1l. Sdfadjointness of L and somerelative bounds. We introduce the positive operator
A = dI'(Ju|) with domainD(A) = {y € H : ||[AY¥ | < oo} and the number operator

N =dr'(d) (89)
with natural domairD(N) = {¥ € H : [Ny | < oo}.

Proposition A.1 (Relative Boundp Set L? = L2(R x §?), and let 0 < g < oo bea
fixed number.

1) If f € L2 then [la(HN~Y2|| < | £l 2

2)1f ju| Y2 € L, then la(f)A~ 1/2|| < Hul=Y2f] 2.

3) For v € D(NY?) and v e D(AY?) respectively, we have the following bounds,
uniformly in 8 > Bo:

1112 < ClGH (INY2p 12 + I 1?),
1112 = CIGI (IAY2p 12 + 1y 11?)

Here, C < C'(1 + ﬂo_l), where C’ isindependent of 8, Bo.
4) For ¢ € D(NY?), any ¢ > 0, and uniformly in g > o, we have

[, AY)| < cINY2y)|2 418 ||G|| ||w||2[ 1+ By o HIglPd>k.
5) For v € D(AY?), any ¢ > 0, and uniformly in 8 > Bo, we have

|<w,uw>|5c||Al/2w||2+ ||G|| ||w||2/ 1+ Byt —1)'3'

Remarks. 1. The parametegg gives the highest temperaturgy = 1/80, S.t. our
estimates 3)-5) are valid uniformly ifi < Tp. Ty can be fixed at any arbitrary large
value. Since we are not interested in the large temperatureZimit oo, we set from
now on for notational conveniendg = 1.
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2. Notice that 4) and 5) tell us th&tc > 0 (with the O-notation introduced after
Theorem 2.1),

M| <cN+ O0R?/c), || <cA+ O@R%/c),

where we understand these inequalities holding in a sense of quadratic fofM& ff)
andD(AY?2) respectively.

Proof of Proposition A.1. The proof is standard (see e.g. [BFS4, JP1, JP2]); we only
present the proof of 3), as an example of how to keep track.dfrom ||y |2 <
4IGII% (lla* (e 11? + la* (g2 ¥ 12 + la(g) ¥ |I* + la(g2)¥ 1), and using the CCR
[a*(f),a(g)]l = (f. g), we get

la*(g1.2)V 11 = (¥, a(gr.2)a*(g1.2)¥) = lla(gr2)¥II” + llgr2l2201¥ 1%,

so [1I2 < 8IGI2 (latenV 12 + la(e) | + 2lg1llZ1¥1?), where we used
llgill 2 = llg2ll 2, sincegi(u, @) = —ga(—u, @). Using 1) and 2) above, we get

1112 < 161G lgalZ, (INY20 12 + 1v17)
2
1112 < 161G [lu ™2, (142012 + 1w12).

Next, we show thaj¢g1||Lz < Cand|| [u|"Y?g1);2 < C, unlformly inB > Bo. Indeed,
notice that1|g1||L2 = fR3(1+2M)|g(w a)|2da)dS(a) ||g2||L2,where we represented
g in the integral in spherical coordinates. Since we haye2l = 1+ 2(ef? — 1)~1 <
1+ 28 Y0t < 14 285 w2, uniformly in 8 > Bo, we get with (7) (forp > 0) the
following uniform bound in8 > Bo:

lgr2ll?, <2 /R (4 Byt Hig®Pdk = € < oo, (90)

Similarly, || [u|~*?g1l|3, < 2 [ps(1 + By to ™ Ho tg(w, @)|?d%k = C < oo, uni-
formly in 8 > pBo. It |s clear from the last two estimates th@tsatisfies the bound
indicated in the proposition. O

These relative bounds and Nelson’s commutator theorem yield essential selfadjoint-
ness of the Liouvillian (cf. also Theorem 5.1 in [DJ]):

Theorem A.2 ( Selfadjointness of the Liouvillian). Snce H), is bounded below, there
isaC > Ost. H, > —C. Supposethat [G, H,](H, + C)~¥/2 isbounded in the sense
that the quadratic formy +— 2i Im(Gvr, H,v), defined on D(H,,), is represented by
an operator denoted [G, H)lo, St. [G, Hplo(H, + C)~Y/? isbounded. Then ¥ A € R,
L isessentially selfadjoint on

Dy := D(H,) ® D(H,) ® D(A) C H, @ H, ® F(LAR x 59)).
Proof. The proof uses Nelson’s commutator theorem (see [RS], Theorem X.37). Let

N=(H,+C)®1,+1,® (H, + C) + A + 1, then\ is selfadjoint onDo and
N > 1. Also, L is defined and symmetric dRg.
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According to Nelson’s commutator theorem, in order to prove Theorem 1.2, we have
to show that ¢ € Dy and some constaat > 0,

ILyIl < dINV, (91)
(LY, NY) — Ny, Ly)| < dIINY2y 2. (92)

Estimate (91) easily follows fronanN—ln < 1, ||Lf/\/‘1|| <land||IN7Y <
I1(A +D)~Y2| (A +DY?(A + 171 < d (by 3) of Proposition 6.1).
To show (92), notice thaty commutes with\/, so the I.h.s. of (92) reduces to

Iy, NY) — Ny, Ty | < [Ty, AY) — (A, Ty)| 4+ K, (93)
where

K= |{Iv.(Hy+CO)®1+1® (H, + C)y)

(94)
~((H, +O)®1+1® (H, + O)Y, IY)|.

Let us examine the first term on the r.h.s. of (93). It is easily shown that Bifges €
L%(R x §?), thena*(g1.2)A = Aa*(g12) + a*(|lulg12) on D(A). This shows that
a#(gl,z) leaveD(A) invariant and so we havey € Do:

| (I, AY) — (A, 1) |
=y, UA — ADY)|
= |(v, (Gi ® (a*(Julg1) — a(lulg1)) — G, ® (a*(lulg2) — a(lu|g2))) V)|
<yl A + DY2y)l < clINY 2y,

where we used Proposition 6.1 in the third step.
Now we look atK given in (94). Using the specific form df(see (9)), we can write
K < |Ki1| + |K2|, where

K1= (G ® (a(g1) + a*(g))¥. (Hy, + C) ® 1)
—((Hy, + C) ® 1y, G; ® (a(g1) + a*(g1)¥).

K> = (G, ® (a(g2) + a*(g2)¥, 1 ® (Hp + C)Y)
—(1® (Hy + O, G, ® (a(g2) + a*(g)) V).

We examinek. Lety € Do, then(H, + C)Y/?y € H, and so

K1=2iIm(G; ® (a(g1) + a*(g1)), (Hp + C) @ 19)
= 2iIm((a(gy) +a*(gV)¥, [G. Hplo¥),
so we obtaifK1| < c[[(A + DY2y || |(H, + OY2 @ 1y | < clINY2y 2. The same

estimate is obtained fgK2| in a similar way. This shows (92) and completes the proof.
O
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A.2. Proof of Theorem 2.4. For a fixed eigenvalue # 0 of L, define the subsets df.

ND = (j|E; — Ej = e},

N = (i|E; —Ej = e},
N, :=U; N = {j|E; — E; = e for somei},
N =Y Nl(j) = {i|E; — Ej = e for somej}.

We also letP; denote the rank-one projector orifg;, where we recall thaly; } is the
orthonormal basis diagonalizirig,. For any nonempty subsaf C N, put

Py =) Pj, and Py :=0if \is empty.
jeN

SetE,,, := E,, — E,, and fore € o (L,)\{0}, m € N; andn € N,, define:

Sy = info(PM(m)GPM;GPMW rPM;,,,>) >0, (95)

/ Cp— 1 .
8 = inf o(PM(n)GPNILGPM(n) i PNIW) > 0. (96)

Here, the superscript denotes the complement. Notice tha i= 0, thenN¢ = Nf
are empty, and,,, 5, = 0. We define alsdg := inf,,cn; {8} + inf,cn; {8, From
P(L,=¢) = Z{i’j:EU:e} P; ® P;, we obtain together with the definition Be) given
in (16):

Fp)=> (1=8k,..) . > /S(Em,, — e+ u)P;j m* Puym Py.

m,n {i,j:Eij=e} {k,l:Epy=e}

(97)

The idea here is to get a lower bound on the sum @uern) € N x N by summing only
over a convenient subset Nf x N (notice that every term in the sum is positive). That
subset is chosen such that the summands reduce to simpler expressions.
Using the definition ofz (see (17)), we obtain
Pijm*PmnmPkl
= Pij (Glgl - Gr§2) Piun (G181 — Grg2) Py
=PGP,GP ® Pnsjn8n1|gl|2 - PGPy ® PnCGCPZSjnamkgng
— PGPy ® PiCGCP8im8ug281 + P ® P;jCGCP,CGCPi8imbmi|g2]?.

Summing ovet, j andk, [ according to (97) yields
> > Pijm* PuamPy
{i,j:Eij=e} {k,l:Epy=e}

= (ElP_N;(n)GPm Q P, — §2Pm ® P./\fr(m)CGCPn) . adjOint
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For(m,n) € N; x N, we havePN<n> =0 andPN<m> # 0, and for(m, n) € Nf x N,
1 r
we havePNw #0 andPN(m) = 0. As explained above, we now get a lower bound on
1 r
the sum (97) by summing only over the disjoint union

(m,n) € Ni x NF UNf x N

An easy calculation shows that

. 2
Tple) > inf (/ dS |g2(Eij. )| ) Y " Pu®CPy ;G Pre GPyynC
i,j:E;ij#0 S2 N r r

. 2
|nf dS E", n G Ppre n P, .
+ i1y £0 <,/SZ ‘gl( ij Ol)’ >n§/ ( ) N /\/Z( ) ® Py

Next, we investigate the integrals. From (10), we have
/ dS|g12(Eij, a)|* = |El;,‘|/ dS|g(|Eijl, )l
52 52

uniformly in g > 1. With (95), (96) and remarking that(CTC) = o(T) for any
selfadjointT, this yields

[ple) = ,j_'E”# (IEIJI/ dS|g(Eij, a)] ) (;JQL,{S’"} +ni€ﬂ}[r{5n}> P(Ly=e),

since)_,cn; P @ Py = 3 pen; PN,(”) ® P, = P(L, = e). This shows 1) of

Theorem 2.4.
Now we look at the zero eigenvalue. A general normalized element oPRaAp = 0)

is of the formg = 3", i ® @i, with 3, |¢;1? = 1, so

(9.0 O00) = 3 (1= 81,,0) Y ics [ 8B + 1) © 100" Prw; ).
m.n ij

Using again the explicit form aof: given in (17) andg,,, CGC¢,) = {(¢m, Go,), we
obtain

(¢, T(O¢) =Y (1—8E,,.0) / 8(Emn + ) (@, Gom)|? lcags — cmgal®.  (98)

m,n

We split the domain of integratidR x S2 into R, x S2 UR_ x $? and using (10) and
g2(u, @) = —g1(—u, «), arrive at

2
/S(Emn +u)lcng1— Cng|2 = /3 {S(Emn + w) ‘\/ 1+ pcng — \/Ecmg‘
R
2
+8(Epn — ) ‘«/ﬁcng v 1+Mcmg‘ } .
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This together with (98) gives

e betaE,

(¢, T(0)p) =2 Z (@n, Gom)1? P —
{m,n:Ep, <0} (99)

2
e_ﬁEm/ZCn - e_ﬁE”/ZCm /S(Emn + w)|g|27

X

where we used(E,., + o)t = 8(Epn + w)(e~PEm — 1)~1, Equation (99) shows that
if we chooser,, = Zgl/ze—ﬁEn/z, then each term in the sum is zero. Recall now that

the particle Gibbs state is given by (21),<§b§, F(O)Qg) = 0. Sincel'(0) > 0, this

implies thatszg is a zero eigenvector af(0).
Finally we show that there is a gap in the spectruni"@) at zero. Indeed, from
(99), we get by the definition gfy (see statement of Theorem 2.4):

(¢, TO)p) =220 Y e PEnl2e, — e PE/2e, |2
{m,n:E;,;, <0}

— goz |e—/3Em/ZCn _ e—ﬂEn/Zcm|2

m,n
=80 Z <e_ﬂEm |Cn|2 + e_ﬁEn |Cm|2 - e_ﬁ(Em+E’l)/2(EnCm + CnEn1)>

m,n

- go(z,,(ﬁ) +Z,(B) — 2’ D el ‘2)

~ 202,01 | (24.9) ).

where we used_, lcn|? = 1. Therefore, we obtain on R ». ['(0) > 2g0Z,(B).

]
This proves that igg > 0, then we have a gap at zero and zero is a simple eigenvalue.
O

A.3. Proof of Proposition 4.7. We denote the spectrum &f, by o (L)) = {e;}, where
we include multiplicities, i.e. for degenerate eigenvalues, we have ¢, for different
J # k. Let P; denote the rank one projector onto sgafh, wherep; € H, ® H, is
the unique eigenvector corresponding:joLet e be a fixed eigenvalue df ,. Setting
m; = Pym, we have

-1
<w, Qlfm* <(L,, —e+u)2+e2) m Q1w>

= > <w, Qlfmjm,-((e,-—e+u>2+ez>—1Qu/f>. (100)

ej€a(Ly)
First, we estimate the term in the sum coming frpim e; = e}:

> <w, 01 / mjfm,-(u2+ez)lQ1w>s > / w”Pm;Quyl®.  (101)
{

{ej=e} ej=e}
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Now
D Imj01yl> = IP(L, = e)(Gigr — Grg2) Q1v|I?
{ej=e}

< 21G1(1g1l* + lg2D IV 112,

50 (101)= 2GI2Iv |12 (Ilga/ullZ, + llg2/ullZ,) = 4IGI2Iga/ul2,I1¥|%. From our

assumptions og (see (7)) and (10), itis clear thég1/u| ;2 = C < oo, uniformly in
B > 1, and we conclude that

(101) < Clly|1%. (102)
Next, we estimate the sum of the terms in (100) with# e and write it as
> / du((ej — e +u)? + €)Y, ), (103)
ej#e

where we puin ; (u, ) = fsz dsS|im;(u, a)01v 2. V& > 0, we have

/ du ((ej — e +u)? + €)Y j(u, )
eje” u—(e=ej)|=&}

<§_22/dumj(u W)

ejFe
< 5‘2/ Im(u, @) Q¥ |1 < 421G IPllg1/ullZ.llw 7 < CE2I1y |17 (104)

Next, with the changes of variablgs= u — (e — ¢;), we arrive at

Z/ du((ej — e +u)? + €)1 (u, ¥)
EZ ue=epize)

- (f dy (y* + €~ 1)Zm/(e ej, V)

ejFe
§ -1 - .
+ / dy(y? +€?) Z [y +e—ej ) —mjle—ej, ¥)]. (105)
—& ejF#e
The mean value theorem yields for the last sum:
Y lseces D mily+e—ej, ). (106)
ejFe
Now
9y Y mj(y+e—ej. )
ejFe

—22/ dS Re(Pj(d,m)(y +e —ej, )01, Pjm(y +e —ej, @) Q1¥).
ejFe
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Using the Schwarz inequality for sums, we bound the modulus of the r.h.s. from above
by

zfszds\/z 1P @um)(y + ¢ — ¢, ) Q1|12

ejF#e
' (107)
D IPm(y + e —ej, ) Q|12
ej;ﬁe
Nowm(y +e—ej,a) = Gigi(y +e—ej,a) — Grg2(y + e —ej,a), SO
IPjm(y +e—ej. o) Q1|2 (108)

<2g1(y +e—ej, IPIP;GIO1Y 1% + 2lg2(y + e — ej, )| P;G, Q1¥ |12

We have to evaluate this at=y € (—£, £). Clearly,le —¢; + J| > le —ej| — || >
do — & > dp/2, if we choosé& < dp/2, where

do := inf |e; —ej| > 0.

ej#ej
The r.h.s. of (108) can thus be estimated from above by

2 sup lgi(u, )?IP;GiQ1¥ 11> +2 sup lg2(u, )2 P;G, Q112
lul>do/2 lu|>do/2

hence we arrive at

|(106)|532|y|||G||2||w||2/ dS( sup [d.g1l+ sup |g1|>. (109)
52 lu|>do/2 lu|>do/2

Using the conditions (7) witlp > 0, one shows that the suprema are bounded, uniformly
in 8 > 1, and so idg1|, thus (109) gives

(106) < Cly| ¥ (110)

Remark that the constant here dependg@rC ~ dé’fl/z. This argument is valid for
any p. Going back to the second term on the r.h.s. of (105), we have shown:

H
‘[sy o 2 [ e e ) e e )
ejFe
<C||w||/ 2'1'2 E||w|| (111)

Now we consider the first term on the r.h.s. of (105). We see that/sas> 0,

£ dy 2 2/
/—s e gArctan(g/e) = (E +o ((6/5)")) ,
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for any 0 < n < 1. This simply follows from the fact that for any sugh we have
lim,_ 0 x"(Arctan(x) — 7 /2) = 0. Also,

Z mjle—ej, ) = f(w, Q1m*8(u —e+ Lp)P(Lp # e)mQ1y).
ejFe
We conclude that (103) is equal to

Z{(l—O(e/s» f (¥, Qum*s(u—e+L,)P(L, # e)mQ1w>—0<s+es—2)||w||2}.

Choose e.gt = /4 andy close to 1, then we arrive at

(103)= Z {/ (v, 01m*$(u — e+ L,)P(L, # e)m Q1) — 0<e1/4>||w||2} :

This together with (102) yields
Ql/m*((L,, —e+uw)?+e)mQy

> ng {/m*P(LP #e)8(L, — e+ uym — 0(61/4)} Q1. O

AA4. Operator calculus. We outline an operator calculus for functions of selfadjoint op-
erators, used extensively in this work. For a detailed exposition and more references, we
refer to [HS3].

Let f € C’(;(R), k > 2, and define the compactly supported complex measure
df(z) = —5 (8, +idy) f(z)dxdy, wherez = x + iy and f is an almost analytic

complex extension of in the sense thafd, +idy) f(z) = 0, z € R. Then, for a
selfadjoint operatod, one shows that

f(A) = /df(z)(A -7,

where the integral is absolutely convergent. Giygnone can construct explicitly an

almost analytic extensiofi supported in a complex neighbourhood of the suppoyt.of
One shows that fop < k — 2,

k
/ [df@)|1mz[7 <Y DN pa. (112)

j=0
where| fl, = [ dx{(x)"| f(x)], and(x) = (1+ x?)¥/2. Furthermore, the derivatives of
f(A) are given by
7@ = pt [ afana -t (113)

We finish this outline by mentioning that these results extend by a limiting argument to
functionsf that do not have compact support, as long as the norms in the r.h.s. of (112)
are finite.
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